Stokes’ first problem for an electro-conducting micropolar fluid with thermoelectric properties

2010 ◽  
Vol 88 (1) ◽  
pp. 35-48 ◽  
Author(s):  
Magdy A. Ezzat ◽  
Hamdy M. Youssef

This work is related to the flow of an electro-conducting micropolar fluid presenting thermoelectric properties effect in the presence of a magnetic field. The electro-conducting thermofluid equation of heat transfer with one relaxation time is derived. The flow of an electro-conducting micropolar fluid over a plate that is moved suddenly is considered. The governing coupled equations in the frame of the boundary-layer model are applied to Stokes' first problem with heat sources. Laplace-transform and Fourier-transform techniques are used to obtain the solution. The inverses of the Fourier transforms are obtained analytically. The Laplace transforms are obtained using the complex inversion formula of the transform together with Fourier-expansion techniques. Numerical results for the temperature distribution, the velocity, and the microrotation components are represented graphically. Thermoelectric figure-of-merit, Seebeck and Peltier effects on a micropolar fluid are studied.

2019 ◽  
Vol 34 (02) ◽  
pp. 2050019 ◽  
Author(s):  
Y. Zhang ◽  
M. M. Fan ◽  
C. C. Ruan ◽  
Y. W. Zhang ◽  
X.-J. Li ◽  
...  

[Formula: see text] ceramic samples have a structure similar to phonon glass electronic crystals, and their thermoelectric properties can be effectively adjusted through repeated grinding and sintering. The results show that multi-sintering can make their grain refined and increase their grain boundary, which will effectively increase density and phonon scattering. Finally, multi-sintering can reduce the resistivity and thermal conductivity, thus obviously improve thermoelectric figure of merit [Formula: see text] of [Formula: see text]. The optimum [Formula: see text] value of 0.26 is achieved at 923 K by the third sintered sample.


2001 ◽  
Vol 16 (3) ◽  
pp. 837-843 ◽  
Author(s):  
Xinfeng Tang ◽  
Lidong Chen ◽  
Takashi Goto ◽  
Toshio Hirai

Single-phase filled skutterudite compounds, CeyFexCo4−xSb12 (x = 0 to 3.0, y = 0 to 0.74), were synthesized by a melting method. The effects of Fe content and Ce filling fraction on the thermoelectric properties of CeyFexCo4−xSb12 were investigated. The lattice thermal conductivity of Ce-saturated CeyFexCo4−xSb12, y being at the maximum corresponding to x, decreased with increasing Fe content (x) and reached its minimum at about x = 1.5. When x was 1.5, lattice thermal conductivity decreased with increasing Ce filling fraction till y = 0.3 and then began to increase after reaching the minimum at y = 0.3. Hole concentration and electrical conductivity of Cey Fe1.5Co2.5Sb12 decreased with increasing Ce filling fraction. The Seebeck coefficient increased with increasing Ce filling fraction. The greatest dimensionless thermoelectric figure of merit T value of 1.1 was obtained at 750 K for the composition of Ce0.28Fe1.52Co2.48Sb12.


2000 ◽  
Vol 626 ◽  
Author(s):  
Joachim Nurnus ◽  
Harald Beyer ◽  
Armin Lambrecht ◽  
Harald Böttner

ABSTRACTBi2Te3 based low dimensional structures are interesting material systems to increase the thermoelectric figure of merit ZT by either the expected reduction of the thermal conductivity or by a possible power factor enhancement due to quantum confinement. Due to low lattice mismatch Bi2(Te1-xSex)3, PbSe1-xTex, as well as Pb1-xSrxTe, and BaF2 are suitable for Bi2Te3 based low dimensional structures. Especially due to their significantly enhanced band gap lead chalcogenide compounds like Pb1-xSrxTe (Pb0.87Sr0.13Te: 0.6 eV) are well-suited barrier materials in MQW structures. Alternatively the insulator BaF2 can be used for that purpose.Here we report mainly on results of different superlattice structures mentioned above grown by molecular beam epitaxy (MBE) on BaF2(111). The structural properties of these layers were investigated by X-ray diffractometry (XRD), scanning electron microscopy (SEM) and secondary ion mass spectroscopy (SIMS). Structural performance and thermoelectric properties of different Bi2Te3 based superlattices were reported and compared with regard to their superlattice parameters.


2021 ◽  
Vol 26 (2) ◽  
pp. 123-131
Author(s):  
E.V. Morozova ◽  
◽  
D.A. Timkaeva ◽  

The hybrid systems based on the carbon nanotubes (CNT) and fullerenes (nanopipodes) are promising for applications in nanoelectronics. With insignificant variation of the CNT diameter the change of the fullerenes geometry takes place. The periodically located inside fullerenes represent a set of quantum points in the one-dimensional super-lattice. Using the variation of inside fullerenes it is possible to modulate the zone structure of the CNT – fullerene system and to control the electronic and phonon characteristics of nanopipodes. In the work the optical and thermoelectric properties of CNT with encapsulated molecules of C60 fullerene have been investigated. Using the first-principle methods the coefficients of absorption, optical conductivi-ty, thermal conductivity, thermoelectric figure of merit for CNT with fullerenes, periodically lo-cated inside the nanotubes at different distances from each other, have been calculated. It has been shown that with decreasing the distance between fullerenes the optical conductivity of CNT – C60 is suppressed at high frequencies. It has been determined that the conductance of the structures with fullerenes is less than the conductance of a clean tube, and approximately equal for considered distances (12.3 and 19.7 Å) between fullerenes. The CNT thermal conductivity due to the encapsulation of fullerenes considerably (3–4 times) decreases for the considered CNT (8.8) – C60 systems.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 140 ◽  
Author(s):  
Ji Hoon Kim ◽  
Seunggun Yu ◽  
Sang Won Lee ◽  
Seung-Yong Lee ◽  
Keun Soo Kim ◽  
...  

Recently, two-dimensional tungsten disulfide (WS2) has attracted attention as a next generation thermoelectric material due to a favorable Seebeck coefficient. However, its thermoelectric efficiency still needs to be improved due to the intrinsically low electrical conductivity of WS2. In the present study, thermoelectric properties of WS2 hybridized with highly conductive single-walled carbon nanohorns (SWCNHs) were investigated. The WS2/SWCNH nanocomposites were fabricated by annealing the mixture of WS2 and SWCNHs using a high-frequency induction heated sintering (HFIHS) system. By adding SWCNHs to WS2, the nanocomposites exhibited increased electrical conductivity and a slightly decreased Seebeck coefficient with the content of SWCNHs. Hence, the maximum power factor of 128.41 μW/mK2 was achieved for WS2/SWCNHs with 0.1 wt.% SWCNHs at 780 K, resulting in a significantly improved thermoelectric figure of merit (zT) value of 0.027 compared to that of pristine WS2 with zT 0.017.


2010 ◽  
Vol 1267 ◽  
Author(s):  
Adul Harnwunggmoung ◽  
Ken Kurosaki ◽  
Hiroaki Muta ◽  
Shinsuke Yamanaka

AbstractCoSb3 is known as a skutterudite compound that could exhibit high thermoelectric figure of merit. However, the thermal conductivity of CoSb3 is relatively high. In order to enhance the thermoelectric performance of this compound, we tried to reduce the thermal conductivity of CoSb3 by substitution of Rh for Co and by Tl-filling into the voids. The polycrystalline samples of (Co,Rh)Sb3 and Tl-filled CoSb3 were prepared and the thermoelectric properties such as the Seebeck coefficient, electrical resistivity, and thermal conductivity were measured in the temperature range from room temperature to 750 K. The Rh substitution for Co reduced the lattice thermal conductivity, due to the alloy scattering effect. The minimum value of the lattice thermal conductivity was 4 Wm-1K-1 at 750 K obtained for (Co0.7Rh0.3)Sb3. Also the lattice thermal conductivity rapidly decreased with increasing the Tl-filling ratio. T10.25Co4Sb12 exhibited the best ZT values; the maximum ZT was 0.9 obtained at 600 K.


2014 ◽  
Vol 602-603 ◽  
pp. 910-915
Author(s):  
Zhen Ye Zhu ◽  
Xing Hong Zhang ◽  
Jie Cai Han

TiB2 doped B4C composite whichTiB2 contents were 12.4% and 25.4% have been fabricated by the combination of the ball milling process and hot pressing technology. The phase analysis and microstructure of the composite materials are investigated through X-ray diffraction and scan electron microscope, respectively. In addition, thermoelectric properties of the composite materials are studied. The results show that the microcracks are easy to form in the interface between B4C and TiB2. It is also found that, the electrical and thermal conductivity increase wi2. Edit Paperth the increase of TiB2 doping, while the Seebeck coefficient decreases with the increase of TiB2 doping. The thermoelectric figure of merit of the B4C+25.4%TiB2 composite material is 50% higher than that of B4C at 573K, while the ZT of B4C+25.4% TiB2 composite material is lower than that of B4C at 873K.


2003 ◽  
Vol 18 (7) ◽  
pp. 1646-1651 ◽  
Author(s):  
Ryoji Funahashi ◽  
Saori Urata ◽  
Toyohide Sano ◽  
Masaaki Kitawaki

Having recently succeeded in synthesizing large single crystals of (Ca2CoO3)CoO2 (Co-349) with superior thermoelectric properties using a modified flux method, we have prepared a composite material of Co-349 powder and single crystals and examined its thermoelectric properties. The electrical conductivity σ of this composite, which contained 20 wt.% single crystals, was higher than that of a sample without the single crystals. While the achievable effect has yet to be fully realized, improved grain alignment and the effect of current bypassing grain boundaries through the large single crystals in the composite are thought to cause the increasing σ, which consequently results in an enhanced thermoelectric figure of merit of about 0.56 at 973 K in air.


2010 ◽  
Vol 650 ◽  
pp. 126-131 ◽  
Author(s):  
Hong Fu ◽  
Peng Zhan Ying ◽  
J.L. Cui ◽  
Y.M. Yan ◽  
X.J. Zhang

Solid solution formation is a common and effective way to reduce the lattice thermal conductivity for thermoelectric materials because of additional phonon scattering by point defects and grain boundaries. In the present work we prepared In2Te3–SnTe compounds using a mild solidification technique and evaluated their thermoelectric properties in the temperature range from 318705 K. Measurements reveal that the transport properties are strongly dependent on the chemical composition  In2Te3 content, and lattice thermal conductivity significantly reduces above a minimum In2Te3 concentration, which can possibly be explained by an introduction of the vacancy on the indium sublattice and periodical vacancy planes. The highest thermoelectric figure of merit ZT of 0.19 can be achieved at 705 K, and a big improvement of In2Te3 based alloys would be expected if a proper optimization to the chemical compositions and structures were made.


2012 ◽  
Vol 519 ◽  
pp. 188-192 ◽  
Author(s):  
P.Z. Ying ◽  
H. Zhou ◽  
Y.L. Gao ◽  
Y.Y. Li ◽  
Y.P. Li ◽  
...  

Here we report the thermoelectric properties of a wide–gap chalcopyrite compound AgInSe2, and observed the remarkable improvement in electrical conductivity σ, due to the bandgap (Eg = 1.12 eV) reduction compared to In2Se3. The improvement in σ is directly responsible for the enhancement of thermoelectric figure of merit ZT, though the thermal conductivity is much higher at 500 ~ 724 K. The maximum ZT value is 0.34 at 724 K, increasing by a factor of 4, indicating that this chalcopyrite compound is of a potential thermoelectric candidate if further optimizations of chemical compositions and structure are made.


Sign in / Sign up

Export Citation Format

Share Document