Atmospheric vertical energy flux due to a ground disturbance

1969 ◽  
Vol 47 (7) ◽  
pp. 707-725 ◽  
Author(s):  
Robert F. MacKinnon

Evaluations are given of the nett mean vertical energy flux due to small oscillations at several altitudes caused by a ground disturbance in a wind- and temperature-stratified atmosphere. A theoretical model is assumed which consists of an inviscid perfect gas above a flat nonrotating earth. Results are given for various wind and temperature profiles. It is found that winds can appreciably affect the energy flux due to long-period waves at great heights. The importance of the temperature structure in the vicinity of critical levels is demonstrated. The significance of 'leaky' modes is discussed with regard to the relationship between the discrete and continuous spectra of waves. A simple approximation to energy flux associated with acoustic waves of short periods is found to apply for certain ground disturbances. The relevance of the results to traveling ionospheric disturbances is discussed.

2013 ◽  
Vol 62 (4) ◽  
pp. 605-612
Author(s):  
Marek Szmechta ◽  
Tomasz Boczar ◽  
Dariusz Zmarzły

Abstract Topics of this article concern the study of the fundamental nature of the sonoluminescence phenomenon occurring in liquids. At the Institute of Electrical Power Engineering at Opole University of Technology the interest in that phenomenon known as secondary phenomenon of cavitation caused by ultrasound became the genesis of a research project concerning acoustic cavitation in mineral insulation oils in which a number of additional experiments performed in the laboratory aimed to determine the influence of a number of acoustic parameters on the process of the studied phenomenona. The main purpose of scientific research subject undertaken was to determine the relationship between the generation of partial discharges in high-voltage power transformer insulation systems, the issue of gas bubbles in transformer oils and the generated acoustic emission signals. It should be noted that currently in the standard approach, the phenomenon of generation of acoustic waves accompanying the occurrence of partial discharges is generally treated as a secondary phenomenon, but it can also be a source of many other related phenomena. Based on our review of the literature data on those referred subjects taken, it must be noted, that this problem has not been clearly resolved, and the description of the relationship between these phenomena is still an open question. This study doesn’t prove all in line with the objective of the study, but can be an inspiration for new research project in the future in this topic. Solution of this problem could be a step forward in the diagnostics of insulation systems for electrical power devices based on non-invasive acoustic emission method.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 510
Author(s):  
Lukas Boehler ◽  
Mateusz Daniol ◽  
Ryszard Sroka ◽  
Dominik Osinski ◽  
Anton Keller

Surgical procedures involve major risks, as pathogens can enter the body unhindered. To prevent this, most surgical instruments and implants are sterilized. However, ensuring that this process is carried out safely and according to the normative requirements is not a trivial task. This study aims to develop a sensor system that can automatically detect successful steam sterilization on the basis of the measured temperature profiles. This can be achieved only when the relationship between the temperature on the surface of the tool and the temperature at the measurement point inside the tool is known. To find this relationship, the thermodynamic model of the system has been developed. Simulated results of thermal simulations were compared with the acquired temperature profiles to verify the correctness of the model. Simulated temperature profiles are in accordance with the measured temperature profiles, thus the developed model can be used in the process of further development of the system as well as for the development of algorithms for automated evaluation of the sterilization process. Although the developed sensor system proved that the detection of sterilization cycles can be automated, further studies that address the possibility of optimization of the system in terms of geometrical dimensions, used materials, and processing algorithms will be of significant importance for the potential commercialization of the presented solution.


1977 ◽  
Vol 34 (8) ◽  
pp. 1095-1104 ◽  
Author(s):  
J. H. Steele ◽  
D. M. Farmer ◽  
E. W. Henderson

Certain physical measurements intended to shed light on the circulation in large plastic enclosures (60–2000 m3) induced by the changing environment in which they are moored are described. Layers of dye were generally seen to diffuse vertically although some important advection effects were also observed. Estimates of an average coefficient of turbulent diffusivity yielded values in the range.05–.26 cm2∙s−1.Measurements taken with recording thermistor chains both inside and outside the enclosures show strong damping of external fluctuations with periods significantly less than 1 day. Various possible sources of mixing energy are considered and it is concluded that thermal forcing through the wall may be significant and could account for the observed range of coefficients.The significance of the observed mixing and circulation to the ecology of the enclosures is discussed. Of particular importance is the vertical mixing of nutrients that influences phytoplankton sinking rates and thus plays a crucial role in determining variations in algal concentration at different depths. Key words: mixing, enclosures, controlled ecosystem pollution experiment, circulation, temperature profiles


Author(s):  
J. Whale ◽  
N. Fowkes ◽  
G. Hocking ◽  
D. Hill

AbstractThis paper is concerned with the injection moulding process, in which hot molten plastic is injected under high pressure into a thin cold mould. Assuming that the velocity and temperature profiles across the mould maintain their shape, a simple steady state model to describe the behaviour of a Newtonian fluid during the filling stage is developed. Various phenomena of the process are examined, including the formation of a layer of solid plastic along the walls of the mould, and the relationship between the flux of liquid plastic through the mould and the average pressure gradient along the mould. In any given situation, it is shown that there is a range of pressures and injection temperatures which will give satisfactory results.


2004 ◽  
Vol 22 (1) ◽  
pp. 47-62 ◽  
Author(s):  
E. L. Afraimovich ◽  
E. I. Astafieva ◽  
S. V. Voyeikov

Abstract. We investigate an unusual class of medium-scale traveling ionospheric disturbances of the nonwave type, isolated ionospheric disturbances (IIDs) that manifest themselves in total electron content (TEC) variations in the form of single aperiodic negative TEC disturbances of a duration of about 10min (the total electron content spikes, TECS). The data were obtained using the technology of global detection of ionospheric disturbances using measurements of TEC variations from a global network of receivers of the GPS. For the first time, we present the TECS morphology for 170 days in 1998–2001. The total number of TEC series, with a duration of each series of about 2.3h (2h18m), exceeded 850000. It was found that TECS are observed in no more than 1–2% of the total number of TEC series mainly in the nighttime in the spring and autumn periods. The TECS amplitude exceeds the mean value of the "background" TEC variation amplitude by a factor of 5–10 as a minimum. TECS represent a local phenomenon with a typical radius of spatial correlation not larger than 500km. The IID-induced TEC variations are similar in their amplitude, form and duration to the TEC response to shock-acoustic waves (SAW) generated during rocket launchings and earthquakes. However, the IID propagation velocity is less than the SAW velocity (800–1000m/s) and are most likely to correspond to the velocity of background medium-scale acoustic-gravity waves, on the order of 100–200m/s. Key words. Ionosphere (ionospheric irregularities, instruments and techniques) - Radio science (ionospheric propagation)


2002 ◽  
Vol 456 ◽  
pp. 377-409 ◽  
Author(s):  
N. SUGIMOTO ◽  
K. TSUJIMOTO

This paper considers nonlinear acoustic waves propagating unidirectionally in a gas-filled tube under an axial temperature gradient, and examines whether the energy flux of the waves can be amplified by thermoacoustic effects. An array of Helmholtz resonators is connected to the tube axially to avoid shock formation which would otherwise give rise to nonlinear damping of the energy flux. The amplification is expected to be caused by action of the boundary layer doing reverse work, in the presence of the temperature gradient, on the acoustic main flow outside the boundary layer. By the linear theory, the velocity at the edge of the boundary layer is given in terms of the fractional derivatives of the axial velocity of the gas in the acoustic main flow. It is clearly seen how the temperature gradient controls the velocity at the edge. The velocity is almost in phase with the heat flux into the boundary layer from the wall. With effects of both the boundary layer and the array of resonators taken into account, nonlinear wave equations for unidirectional propagation in the tube are derived. Assuming a constant temperature gradient along the tube, the evolution of compression pulses is solved numerically by imposing the initial profiles of both an acoustic solitary wave and of a square pulse. It is revealed that when a positive gradient is imposed, the excess pressure decreases while the particle velocity increases and that the total energy flux can indeed be amplified if the gradient is suitable.


2020 ◽  
Vol 7 ◽  
Author(s):  
Vanessa Cardin ◽  
Achim Wirth ◽  
Maziar Khosravi ◽  
Miroslav Gačić

The available historical oxygen data show that the deepest part of the South Adriatic Pit remains well-ventilated despite the winter convection reaching only the upper 700 m depth. Here, we show that the evolution of the vertical temperature structure in the deep South Adriatic Pit (dSAP) below the Otranto Strait sill depth (780 m) is described well by continuous diffusion, a continuous forcing by heat fluxes at the upper boundary (Otranto Strait sill depth) and an intermittent forcing by rare (several per decade) deep convective and gravity-current events. The analysis is based on two types of data: (i) 13-year observational data time series (2006–2019) at 750, 900, 1,000, and 1,200 m depths of the temperature from the E2M3A Observatory and (ii) 55 vertical profiles (1985–2019) in the dSAP. The analytical solution of the gravest mode of the heat equation compares well to the temperature profiles, and the numerical integration of the resulting forced heat equation compares favorably to the temporal evolution of the time-series data. The vertical mixing coefficient is obtained with three independent methods. The first is based on a best fit of the long-term evolution by the numerical diffusion-injection model to the 13-year temperature time series in the dSAP. The second is obtained by short-time (daily) turbulent fluctuations and a Prandtl mixing length approximation. The third is based on the zero and first modes of an Empirical Orthogonal Function (EOF) analysis of the time series between 2014 and 2019. All three methods are compared, and a diffusivity of approximately κ = 5 · 10−4m2s−1 is obtained. The eigenmodes of the homogeneous heat equation subject to the present boundary conditions are sine functions. It is shown that the gravest mode typically explains 99.5% of the vertical temperature variability (the first three modes typically explain 99.85%) of the vertical temperature profiles at 1 m resolution. The longest time scale of the dissipative dynamics in the dSAP, associated with the gravest mode, is found to be approximately 5 years. The first mode of the EOF analysis (85%) represents constant heating over the entire depth, and the zero mode is close to the parabolic profile predicted by the heat equation for such forcing. It is shown that the temperature structure is governed by continuous warming at the sill depth and deep convection and gravity current events play less important roles. The simple model presented here allows evaluation of the response of the temperature in the dSAP to different forcings derived from climate change scenarios, as well as feedback on the dynamics in the Adriatic and the Mediterranean Sea.


2015 ◽  
Vol 9 (2) ◽  
pp. 691-701 ◽  
Author(s):  
C. Cox ◽  
N. Humphrey ◽  
J. Harper

Abstract. On the Greenland ice sheet, a significant quantity of surface meltwater refreezes within the firn, creating uncertainty in surface mass balance estimates. This refreezing has the potential to buffer seasonal runoff to future increases in melting, but direct measurement of the process remains difficult. We present a method for quantifying refreezing at point locations using in situ firn temperature observations. A time series of sub-hourly firn temperature profiles were collected over the course of two melt seasons from 2007 to 2009 along a transect of 11 sites in the accumulation zone of Greenland. Seasonal changes in temperature profiles combined with heat flux estimates based on high-temporal-resolution temperature gradients enable us to isolate the heat released by refreezing using conservation of energy. Our method is verified from winter data when no refreezing takes place, and uncertainty is estimated using a Monte Carlo technique. While we limit our method to a subsection of firn between depths of 1 and 10 m, our refreezing estimates appear to differ significantly from model-based estimates. Furthermore, results indicate that a significant amount of refreezing takes place at depths greater than 1 m and that lateral migration of meltwater significantly complicates the relationship between total surface melt and total refreezing.


Sign in / Sign up

Export Citation Format

Share Document