WSix formation in W–Si multilayers

1987 ◽  
Vol 65 (8) ◽  
pp. 868-871 ◽  
Author(s):  
S. Eicher ◽  
R. A. Bruce

The formation of WSix phases from multiple thin layers of W and Si was investigated. Tungsten and silicon thin films of ~5 nm thickness were deposited sequentially onto GaAs substrates by dc magnetron sputtering from elemental targets. The total film thickness was ~300 nm. The W and Si layer thickness, and thus the overall composition of the films, was controlled by adjusting the power applied to the two sputtering targets. The films examined in this work had nominal compositions in the range WSi2–WSi0.48.The multilayered structure was subjected to rapid thermal annealing at 900 °C. The extent of the reaction, the grain size, and the crystal structure of the silicides were determined using transmission electron microscopy and X-ray diffraction. For WSix films with [Formula: see text], the silicides had the βW structure and were relatively large grained, ~450 nm, while for x > 0.52, the film contained the W5Si3 phase and consisted of grains ~45 nm in diameter.Schottky contacts were of good quality for [Formula: see text], with a barrier height (ϕ) of 0.7 V and an ideality factor (n) of 1.15. Schottky contacts with higher silicon concentrations were poor.The WSix (x = 0.52) Schottky contact has been successfully incorporated into a self-aligned gate field-effect transistor.

1994 ◽  
Vol 299 ◽  
Author(s):  
Saket Chadda ◽  
Kevin Malloy ◽  
John Reno

AbstractCd0.91Zn0.09Te/CdTe multilayers of various period thicknesses were inserted into Cd0.955Zn0.045Te bulk alloys grown on (001) GaAs. The net strain of the multilayer on the underlying Cd0.955Zn0.045Te was designed to be zero. X-ray diffraction full width at half maximum (FWHM) was used as a means to optimize the period thickness of the multilayer. Transmission electron microscopy of the optimum period thickness samples demonstrated four orders of magnitude decrease in the threading dislocation density. Mechanism of bending by equi-strained multilayers is discussed.


1995 ◽  
Vol 399 ◽  
Author(s):  
P. Fons ◽  
S. Niki ◽  
A. Yamada ◽  
A. Okada ◽  
D.J. Tweet

ABSTRACTA series of CuInSe2 thin films of varying thicknesses were grown on both GaAs(001) substrates and nominally lattice-matched In0.29Ga0.71As (001) linearly graded buffers by MBE at 450°C. Transmission electron microscopy and high resolution x-ray diffraction measurements revealed the presence of a second phase with chalcopyrite symmetry strained to the CuInSe2 thin film in-plane lattice constant for CuInSe2 films grown on GaAs substrates. Further examination confirmed that the second phase possessed chalcopyrite symmetry. No second phase was observed in films grown on nearly lattice-matched In0.29Ga0.71As (001) linearly graded buffers. Secondary ion mass spectrometry confirmed the presence of interdiffusion from of Ga from the substrate into the CuInSe2layer. It is speculated that this diffusion is related to the state of stress due to heteroepitaxial misfit.


1993 ◽  
Vol 300 ◽  
Author(s):  
Edward Y. Chang ◽  
Yeong-Lin Lai ◽  
Kuen-Chyuan Lin ◽  
Chun-Yen Chang ◽  
F. Y. Juang

ABSTRACTThe first study of the TiW nitrides (TiWNx) as the Schottky contact metals to the n type Ga0.51In0 49P has been made. The Ga0.51 In0.49P epitaxial layer was successfully grown on the GaAs substrate by LP-MOCVD to form a lattice-matched heterostructure. The RF-magnetron sputtering system was utilized for the nitride deposition. The thermal stability of the nitride films were studied using rapid thermal annealing (RTA) method. Both the electrical characteristics and the materials characteristics were investigated. The materials properties of the nitride films were characterized by X-ray diffraction (XRD), Transmission electron microscopy (TEM), and Auger electron spectroscopy (AES). The TiWNx Schottky contacts demonstrate excellent electrical and physical characteristics, even after high temperature annealing. The barrier heights range from 0.81 to 1.05 eV depending on the content of the nitrogen and the annealing conditions. The XRD and AES results show no indication of interaction at the TiWNX/GaInP interface of both as-deposited and annealed samples. The outstanding characteristics of the contact were attributed to the high bandgap nature of the Ga0.51In0.49P and the incorporation of nitrogen into the TiW films.


2007 ◽  
Vol 537-538 ◽  
pp. 231-238
Author(s):  
Annamaria Mikó ◽  
Márton Takács ◽  
M. Lakatos-Varsányi ◽  
L.K. Varga

Amorphous and partly nanocrystalline amorphous iron-phosphorus (Fe-P) layers have been deposited by pulse electrochemical technique. X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) have been used to characterize the structure in the layers. Depending on the pulse parameters, the structure of Fe-P layers changed from mostly amorphous to partly nanocrystalline amorphous. The magnetic coercivity and the frequency limit of the samples are discussed in terms of the structure of the Fe-P layers. The frequency limit as determined from the permeability spectra is above 10 MHz, which makes these layers suitable for high frequency inductive element applications.


2007 ◽  
Vol 119 ◽  
pp. 239-242 ◽  
Author(s):  
Xiao Li Zhang ◽  
Young Hwan Kim ◽  
Young Soo Kang

Core/shell structured TiO2/ZnO was synthesized in a basic aqueous solution through a simple hydrolyzing method. The powder X-ray diffraction (XRD) and transmission electron microscopy of the initial TiO2/ZnO powder showed diffraction peaks corresponding to the ZnO and TiO2 phase. The structure and thickness of ZnO shell (about 2.5 nm) coated TiO2 surface as thin layers or nanoclusters, depends upon the reactant concentration and the reaction time. The characteristics of the optical absorption were described by UV-visible absorption spectroscopy.


Coatings ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 671 ◽  
Author(s):  
Sorin-Ion Jinga ◽  
Michael Skokin ◽  
Bogdan-Stefan Vasile ◽  
Izabela Constantinoiu ◽  
Dana Miu ◽  
...  

Within the field of tissue engineering, thin films have been studied to improve implant fixation of metallic or ceramic materials in bone, connective tissue, oral mucosa or skin. In this context, to enhance their suitability as implantable devices, titanium-based substrates received a superficial vitroceramic coating by means of laser ablation. Further, this study describes the details of fabrication and corresponding tests in order to demonstrate the bioactivity and biocompatibility of the newly engineered surfaces. Thus, the metallic supports were covered with a complex material composed of SiO2, P2O5, CaO, MgO, ZnO and CaF2, in the form of thin layers via a physical deposition techniques, namely pulsed laser deposition. The resulting products were characterized by X-ray diffraction, Fourier-transform infrared spectroscopy, scanning and transmission electron microscopy coupled with energy dispersive X-ray spectroscopy, selected area electron diffraction, and electron energy loss spectroscopy. It was found that a higher substrate temperature and a lower working pressure lead to the highest quality film. Finally, the samples biocompatibility was assessed and they were found to be bioactive after simulated body fluid soaking and biocompatible through the MTT cell viability test.


1993 ◽  
Vol 311 ◽  
Author(s):  
I. Goldfarb ◽  
E. Zolotoyabko ◽  
D. Shechtman

ABSTRACTAn advanced method for investigation of multicomponent systems is proposed. Thin wedged-shape films of pure components are subsequently deposited to form a multilayered structure with continuously-varying composition as a function of sample location, providing a large number of differently composed samples in one deposition run. Each sample is then subjected to various heat treatments, and phase content as well as the microstructure formed is under investigation.In this study an Au-Ag-Cu multilayered structure was sputtered at a room temperature onto 55 Formvar-coated Mo grids. The satellite-like X-Ray Diffraction (XRD) patterns of these samples revealed the formation of an artificial composition-modulated ternary superlattice, complete destruction of which was observed during heat treatments, where phase formation according to the ternary Au-Ag-Cu phase diagram took place.Several aspects of phase formation were analyzed using XRD, Electron Probe for Micro- Analysis (EPMA) in Scanning Electron Microscopy (SEM), and Scanning Transmission Electron Microscopy (STEM) combined with Selected Area Electron Diffraction (SAED), Digital X-Ray Mapping (DXM), Secondary Electron Mapping and EPMA methods.


1995 ◽  
Vol 399 ◽  
Author(s):  
M.R. Bruni ◽  
G. Padeletti ◽  
M.G. Simeone ◽  
L. Francesio ◽  
P. Franzosi ◽  
...  

ABSTRACTInAs single layers were grown by Molecular Beam Epitaxy on nominally (001) oriented GaAs substrates at growth temperatures ranging from 350 °C to 500 °C and thicknesses between 1 nm and 6 μm. A systematic study of the influence of growth temperature and thickness on crystal defects and surface morphology is discussed by comparing High Resolution X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy investigations.Surface hexagonal shaped holes were observed to develop at the lowest temperatures starting from an heterolayer thickness of 50 nm. Both misfit and threading dislocations were revealed; moreover the correlation between hexagonal shaped surface holes and mixed dislocations, with the component of the Burgers vector (b) along the growth axis larger than the minimum interatomic distance, is discussed. The holes increase in size and decrease in density by increasing the layer thickness. An almost complete surface planarization is observed at a thickness of 6 μm by increasing the growth temperature up to 500 °C.


1993 ◽  
Vol 319 ◽  
Author(s):  
T.S. Huang ◽  
J.G. Pang

AbstractMetallurgical and electrical properties of β-phase PdAl Schottky metallizations on n-GaAs after rapid thermal annealing for 20 s in the temperature range 500-1000°C have been investigated using x-ray diffraction, transmission electron microscopy, Auger depth profiling and current-voltage measurement. The Al-rich contacts were stable up to 900°C, whereas the Pdrich contacts were less stable. The thermal stability of Pd-rich contacts decreased with increasing Pd composition, and interfacial reaction after high temperature annealing resulted in the formation of PdGa compound. The interface between Al-rich PdAI and GaAs substrate was quite sharp even after 900°C anneal. The Schottky barrier heights of Al-rich PdAl contacts increased with annealing temperature. The barrier height enhancement in the annealed Al-rich contacts can be attributed to the thin AlxGal−xAs layer formed at the interface between PdAl and GaAs.


1993 ◽  
Vol 302 ◽  
Author(s):  
Saket Chadda ◽  
Kevin Malloy ◽  
John Reno

ABSTRACTCd0.91Zn0.09Te/CdTe multilayers of various period thicknesses were inserted into Cd0.955Zn0.045Te bulk alloys grown on (001) GaAs. The net strain of the multilayer on the underlying Cd0.955Zn0.045Te was designed to be zero. X-ray diffraction full width at half maximum (FWHM) was used as a means to optimize the period thickness of the multilayer. Transmission electron microscopy of the optimum period thickness samples demonstrated four orders of magnitude decrease in the threading dislocation density. Mechanism of bending by equi-strained multilayers is discussed.


Sign in / Sign up

Export Citation Format

Share Document