scholarly journals Evaluation of the stability of anchor-reinforced slopes

2005 ◽  
Vol 42 (5) ◽  
pp. 1342-1349 ◽  
Author(s):  
D Y Zhu ◽  
C F Lee ◽  
D H Chan ◽  
H D Jiang

The conventional methods of slices are commonly used for the analysis of slope stability. When anchor loads are involved, they are often treated as point loads, which may lead to abrupt changes in the normal stress distribution on the potential slip surface. As such abrupt changes are not reasonable and do not reflect reality in the field, an alternative approach based on the limit equilibrium principle is proposed for the evaluation of the stability of anchor-reinforced slopes. With this approach, the normal stress distribution over the slip surface before the application of the anchor (i.e., σ0) is computed by the conventional, rigorous methods of slices, and the normal stress on the slip surface purely induced by the anchor load (i.e., λpσp, where λp is the load factor) is taken as the analytical elastic stress distribution in an infinite wedge approximating the slope geometry, with the anchor load acting on the apex. Then the normal stress on the slip surface for the anchor-reinforced slope is assumed to be the linear combination of these two normal stresses involving two auxiliary unknowns, η1 and η2; that is, σ = η1σ0 + η2λpσp. Simultaneously solving the horizontal force, the vertical force, and the moment equilibrium equations for the sliding body leads to the explicit expression for the factor of safety (Fs)—or the load factor (λp), if the required factor of safety is prescribed. The reasonableness and advantages of the present method in comparison with the conventional procedures are demonstrated with two illustrative examples. The proposed procedure can be readily applied to designs of excavated slopes or remediation of landslides with steel anchors or prestressed cables, as well as with soil nails or geotextile reinforcements.Key words: slopes, factor of safety, anchors, limit equilibrium method.

2016 ◽  
Vol 857 ◽  
pp. 555-559 ◽  
Author(s):  
Zuhayr Md Ghazaly ◽  
Mustaqqim Abdul Rahim ◽  
Kok Alfred Chee Jee ◽  
Nur Fitriah Isa ◽  
Liyana Ahmad Sofri

Slope stability analysis is one of the ancient tasks in the geotechnical engineering. There are two major methods; limit equilibrium method (LEM) and finite element method (FEM) that were used to analyze the factor of safety (FOS) to determine the stability of slope. The factor of safety will affect the remediation method to be underdesign or overdesign if the analysis method was not well chosen. This can lead to safety and costing problems which are the main concern. Furthermore, there were no statement that issued one of the analysis methods was more preferred than another. To achieve the objective of this research, the soil sample collected from landslide at Wang Kelian were tested to obtain the parameters of the soils. Then, those results were inserted into Plaxis and Slope/W software for modeling to obtain the factor of safety based on different cases such as geometry and homogenous of slope. The FOS obtained by FEM was generally lower compared to LEM but LEM can provide an obvious critical slip surface. This can be explained by their principles. Overall, the analysis method chosen must be based on the purpose of the analysis.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4434
Author(s):  
Daisuke Fujiwara ◽  
Tetsuya Oshima ◽  
Kojiro Iizuka

The resistance force generated when the locked-wheel acts on the soil is critical for deciding the traveling performance of push–pull locomotion. The resistance force depends on the tangential force of the sliding soil wedge beneath the wheel, and the tangential force depends on the forces of the soil and the wheel perpendicular to the tangential direction. Hence, the normal stress distribution of the locked-wheel can affect the resistance force. Previous studies indicated different insights that describe either a uniform or non-uniform shape of the normal stress distribution. The distribution of the locked-wheel still needs to be examined experimentally. This study measured the normal stress distribution using the wheel sensor system, and the variation of the contact area and slip surface beneath the wheel were also observed in PIV analysis. Those results showed that the normal stress distribution was non-uniform along the wheel contact area, and the change of the distribution was confirmed with the change of the contact area and slip surface. Then, the resistance force calculated by a preliminary model based on the measured data was compared with the total resistance force of the wheel measured by a separate sensor. This comparison provided a theoretical consideration for the measured data.


2011 ◽  
Vol 48 (6) ◽  
pp. 891-904 ◽  
Author(s):  
J.R. Stianson ◽  
D.G. Fredlund ◽  
D. Chan

A procedure is developed where stresses from a finite element analysis are incorporated into a limit equilibrium framework to evaluate the stability of three-dimensional slopes. An independent stress-deformation analysis is performed to calculate the internal stress state for the slope. The stress distribution is imported into the three-dimensional slope stability analysis in the form of a regular grid. The slip surfaces considered in the limit equilibrium analysis are ellipsoidal and discretized using a series of triangular planes. The normal and shear force acting at the centroid of individual triangular planes can be computed from the internal stress distribution. Subsequently, the factor of safety of a selected slip surface can be calculated directly without using an iterative procedure. A series of verification examples are presented to confirm that the proposed method provides the required accuracy and flexibility to assess the stability of slopes typically encountered in practice. Sensitivity analyses are presented to show how the procedure used to compute the forces acting on each triangular plane, the number of planes used to discretize the slip surface, and Poisson’s ratio influence the computed factors of safety, but do not limit the successful application of the methodology.


2002 ◽  
Vol 39 (4) ◽  
pp. 799-811 ◽  
Author(s):  
Muhsiung Chang

A three-dimensional (3D) method of analysis of the stability of slopes was developed based on the sliding mechanism observed in the 1988 failure of the Kettleman Hills landfill slope (Kettleman City, California) and the associated model studies. By adopting a limit equilibrium concept, the method assumes the sliding mass as a block system in which the contacts between blocks are inclined. The lines of intersection of the block contacts are assumed to be parallel, which enables the sliding kinematics. In consideration of the differential straining between blocks, the shear stresses on the slip surface and the block contacts are evaluated based on the degree of shear strength mobilization on these contacts. The overall factor of safety is calculated based on the force equilibrium of the individual blocks and the entire block system as well. Based on comparisons with a series of hypothetical 3D and 2D problems with known solutions, the method was generally found to be accurate in predicting the stability of slopes involving a translational type of sliding failure. For rotational sliding failures in clays, however, the method appears to slightly overestimate the calculated factor of safety; up to as much as 10% in a typical problem examined in this study.Key words: slope stability, 3D method, limit equilibrium, block kinematics, strain incompatibility.


2012 ◽  
Vol 170-173 ◽  
pp. 1167-1173
Author(s):  
Ai Zhong Lu ◽  
Ning Zhang

In this paper, the slope before failure is considered as an elastic body subjected to gravity only. With known stress distribution in the slope, stability analysis is carried out by the limit equilibrium method according to the Mohr-Coulomb criterion satisfied by the slip plane. The method proposed in this paper is different from the previous methods, as there is no need to divide the slope into vertical elements or to assume the normal stress distribution on the slip surface. Instead, the solutions are found by directly using the elastic stress solutions in the slope. The equations derived are straightforward and most of them are explicit expressions, which facilitate analyses on the effects of mechanical properties and geometric parameters on the slope stability. This method has clear physical meaning and few assumptions are made.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Huali Liu

By using the explicit solution of three-dimensional slope stability based on modification of normal stress distribution over the slip surface, the influence of assumption of the three-dimensional initial normal stress on the safety factor is investigated. The initial normal stress distribution over the 3D slip surface was assumed, and then it was modified by a function with 2 parameters to satisfy two force equilibrium conditions about two axes and one moment equilibrium condition around one axis. An iterative equation was derived that would yield a value to 3D safety factor. The values of three-dimensional safety factor of symmetrical slopes are computed with different assumptions of initial normal stresses. The computation results show that the influence of assumption of initial normal stress on the safety factor of symmetrical three-dimensional slopes is negligible because the maximum different value of the three-dimensional safety factor is below 5%.


1990 ◽  
Vol 27 (1) ◽  
pp. 145-151 ◽  
Author(s):  
R. N. Chowdhury ◽  
S. Zhang

This note is concerned with the multiplicity of solutions for the factor of safety that may be obtained on the basis of the method of slices. Discontinuities in the function for the factor of safety are discussed and the reasons for false convergence in any iterative solution process are explored, with particular reference to the well-known Bishop simplified method (circular slip surfaces) and Janbu simplified or generalized method (slip surfaces of arbitrary shape). The note emphasizes that both the solution method and the method of searching for the critical slip surface must be considered in assessing the potential for numerical difficulties and false convergence. Direct search methods for optimization (e.g., the simplex reflection method) appear to be superior to the grid search or repeated trial methods in this respect. To avoid false convergence, the initially assumed value of factor of safety F0 should be greater than β1(=−tan α1 tan [Formula: see text]) where α1 and [Formula: see text] are respectively the base inclination and internal friction angle of the first slice near the toe of a slope, the slice with the largest negative reverse inclination. A value of F0 = 1 + β1, is recommended on the basis of experience. If there is no slice with a negative slope for any of the slip surfaces generated in the automatic, search process, then any positive value of F0 will lead to true convergence for F. It is necessary to emphasize that no slip surface needs to be rejected for computational reasons except for Sarma's methods and similarly no artificial changes need to be made to the value of [Formula: see text] except for Sarma's methods. Key words: slope stability, convergence, limit equilibrium, analysis, optimization, slip surfaces, geological discontinuity, simplex reflection technique.


1996 ◽  
Vol 12 (03) ◽  
pp. 167-171
Author(s):  
G. Bezine ◽  
A. Roy ◽  
A. Vinet

A finite-element technique is used to predict the shear stress and normal stress distribution in adherends for polycarbonate/polycarbonate single lap joints subjected to axial loads. Numerical and photoelastic results are compared so that a validation of the numerical model is obtained. The influences on stresses of the overlap length and the shape of the adherends are studied.


1983 ◽  
Vol 20 (4) ◽  
pp. 661-672 ◽  
Author(s):  
R. K. H. Ching ◽  
D. G. Fredlund

Several commonly encountered problems associated with the limit equilibrium methods of slices are discussed. These problems are primarily related to the assumptions used to render the inherently indeterminate analysis determinate. When these problems occur in the stability computations, unreasonable solutions are often obtained. It appears that problems occur mainly in situations where the assumption to render the analysis determinate seriously departs from realistic soil conditions. These problems should not, in general, discourage the use of the method of slices. Example problems are presented to illustrate these difficulties and suggestions are proposed to resolve these problems. Keywords: slope stability, limit equilibrium, method of slices, factor of safety, side force function.


1994 ◽  
Vol 29 (4) ◽  
pp. 393-398 ◽  
Author(s):  
R. Ramesh Kumar ◽  
G. Venkateswara Rao ◽  
K.S. Suresh

Sign in / Sign up

Export Citation Format

Share Document