Some aspects of the mechanics of arching in backfilled stopes

2009 ◽  
Vol 46 (11) ◽  
pp. 1322-1336 ◽  
Author(s):  
Martin Fahey ◽  
Matthew Helinski ◽  
Andy Fourie

In current underground mining using “open stoping” methods, it is common to backfill mined-out voids (“stopes”) using hydraulically placed backfill, which is commonly composed of tailings, to which cement is often added. Knowledge of the stress state within a backfilled stope is required for safe design of drawpoint barricades and for other operational reasons. This stress state depends, inter alia, on the degree of “arching” that occurs, resulting from the development of shear stress between the fill and the stope walls. This paper presents a numerical modelling study of aspects of the arching phenomenon, carried using the computer code Plaxis. The backfill is characterized using the Mohr–Coulomb soil model, and both dry backfill and saturated backfill are considered to completely cover the full spectrum of backfill types that are used in practice. It is shown that even with dry backfill, the behaviour is governed by a complex interaction between the soil parameters. The behaviour is more complex with saturated backfill, with a key parameter being the permeability of the backfill relative to the rate of filling — i.e., whether the backfilling operation can be considered to be “drained” or “undrained” or somewhere between these two extremes.

2020 ◽  
Vol Special Issue (1) ◽  
Author(s):  
Kalunga Ngoma ◽  
Victor Mutambo

Konkola Copper Mine’s Number 4 Shaft is a trackless underground mine applying sublevel open stoping (SLOS) mining method. Number 4 shaft wants to increase ore production from 1 million metric tonnes per annum to 3 million metric tonnes per annum in the next 5 years but ore recovery is 70% or less and dilution is 20% or more. In order to achieve the desired annual target of 3 million metric tonnes ore recovery should be increased from70% to (≥85%) and dilution should be reduced from 20% to (≤10%). Despite being one of the most used underground mining methods, the current SLOS has a challenge of high unplanned dilution. This paper reviews and evaluates parameters that influence recovery and unplanned dilution in sublevel open stopes and applies numerical modelling using PHASE2 software to establish the influence of stress environment on unplanned dilution at the mine. The input parameters for numerical modelling were: Uniaxial Compressive strength (UCS=170MPa), Geological Strength Index (GSI) =55, Young’s Modulus (E) =26000MPa, Hoek-Brown constant (s) =0.0067, Hoek-Brown constant (mi) =20 and Poisson ratio (v) =0.2 major principal stress (σ1) 39MPa, intermediate stress (σ2= 18MPa) and the minor principal stress (σ3= 15MPa). Results obtained from review of mine production records indicate that the main factors that influence unplanned dilution at Number 4 shaft are: poor ground conditions, lack of compliance to recommended stope designs, poor drilling and blasting practices, presence of geological discontinuities, adopted mining sequence of extracting high ore grade first that leads to creation of high stress blocks within the orebody and delayed mucking practice. Results obtained from PHASE 2D model indicate that total displacement of 90mm is recorded in the hangingwall hence influencing stope wall instability that leads to increased unplanned dilution. After stope extraction, it was observed that 60MPa of induced stress developed at the top right corner and 45-50 MPa at the crown pillar and right bottom corner of the stope.


2015 ◽  
Vol 36 (2) ◽  
pp. 17-28
Author(s):  
Lucyna Florkowska ◽  
Jan Walaszczyk

Abstract Numerical modelling is an important tool used to analyse various aspects of the impact of underground mining on existing and planned buildings. The interaction between the building and the soil is a complex matter and in many cases a numerical simulation is the only way of making calculations which will take into consideration the co–existence of a number of factors which have a significant influence on the solution. The complexity of the matter also makes it a difficult task to elaborate a proper mathematical model – it requires both a thorough knowledge of geologic conditions of the subsoil and the structural characteristics of the building. This paper discusses the most important problems related to the construction of a mathematical model of a building-mining subsoil system. These problems have been collected on the basis of many years of experience the authors have in observing the surveying and tensometric deformations of the rock–mass and buildings as well as in mathematical and numerical modelling of the observed processes.


1979 ◽  
Vol 23 (89) ◽  
pp. 420-421 ◽  
Author(s):  
W. F. Budd ◽  
B. J. McInnes ◽  
I. Smith

Abstract It is difficult to deduce sliding properties from the numerical modelling of ordinary glaciers because the flow law of ice is still not known well enough to clearly differentiate sliding from internal deformation of the ice. For glaciers undergoing high-speed surges it appears that the majority of the total speed is due to sliding. Furthermore the average basal shear stress of the ice mass is lowered during the surge. This suggests that surging glaciers can be modelled by incorporating a sliding friction law which has the effective friction coefficient decreasing for high velocities. A relation of this type has been found for ice sliding on granite at −0.5°C by Barnes and others (1971) and has also been obtained for rough slabs with ice at the pressure-melting point by Budd and others (1979). A simple two-dimensional model was developed by Budd and McInnes (1974) and Budd (1975), which was found to exhibit the typical periodic surge-like characteristics of real ice masses. Since the sliding-stress relation for the low velocities and stresses was not known, and was not so important for the surges, it was decided to use the condition of gross equilibrium (i.e. that the ice mass as a whole does not accelerate) together with a single-parameter relation for the way in which the friction decreases with stress and velocity to prescribe the basal shear-stress distribution. The low-stress-velocity relation can thus be obtained as a result. This two-dimensional model has now been parameterized to take account of the three-dimensional aspects of real ice masses. A number of ice masses have since been closely matched by the model including three well-known surging ice masses: Lednik Medvezhiy, Variegated Glacier, and Bruarjökull. Since the flow properties of ice are so poorly known—especially for longitudinal stress and strain-rates—the model has been run with two unknown parameters: one a flow-law parameter (η) and the other a sliding parameter (ø). The model is run over a wide range of these two parameters to see if a good match can be made to the real ice masses and if so what the values of the parameters η and ø are for best fit. The matching of the three above ice masses gave very similar values for each of the two parameters η and ø, the value of η being within the range of values expected for the flow properties of temperate ice as determined by laboratory experiments. Using the same values of η and ø it is found that the ordinary glaciers modelled so far do not develop surging but that they could do if the value of ø were increased or if the mass-balance input were sufficiently increased. For Lednik Medvezhiy a detailed analysis of the friction coefficient with velocity was carried out and it was found that the values required for best fit showed a very close agreement to the sliding friction curve of Barnes and others (1971) at −0.5°C. It is concluded that this type of sliding relation can account for the major features of glacier surge phenomena. Finally it is apparent that the numerical modelling technique can be used very effectively to test any large-scale bulk sliding relation by the analysis of real surges of ice masses and in addition can provide further insight into the sliding relation in association with other stresses in the ice mass.


2013 ◽  
Vol 35 (3) ◽  
pp. 13-24
Author(s):  
L. Florkowska

Abstract Issues presented in this work relate to geotechnical problems that are specific to the mining areas. The paper discusses the methodology of mathematical and numerical modeling of these problems. Examples contained in the paper include: predicting the influence of mining exploitation on a detached building and evaluating the effectiveness of the building protection with the trench. Possible applications of numerical modeling as a tool to aid the continuous monitoring of the building state during the exploitation have also been discussed


Author(s):  
Constantin I. Ba˘rbiˆnt¸a˘ ◽  
Sulleyman Yaldiz ◽  
Alina Dragomir ◽  
Spiridon S. Cret¸u

Wheel and rail in service undergo continual wear and plastic deformation at the surface, so that in time all wheel profiles will be different. The optimization by grinding a worn rail profile to minimize contact stresses requires the development of a software to reconstruct a rail profile using circular arcs. A working algorithm, able to be incorporated into a computer code, has been developed to solve the stress state in the general case of non-Hertzian contacts. To limit the pressure, an elastic-perfect plastic material has been incorporated into the computer code. The pressure distribution and the corresponding stresses states have been investigated for pure normal loadings, as well as for the combined, normal and tangential loadings. The elastic-plastic analysis model allows fast investigations regarding the influence of different parameters such as load level, contact geometry including the geometry of the worn profiles.


2019 ◽  
Vol 262 ◽  
pp. 04002
Author(s):  
Leszek Chomacki

One of the basic roles of foundations is to safely transfer loads from the structure to the subsoil in a controlled manner. Often a key parameter in deciding whether the foundation was designed correctly is the value of settlement of the building and the ground around it. This paper attempts to numerically reproduce the measured settlement of a high-rise building using geotechnical parameters already available. For this purpose, numerical calculations were carried out using two constitutive soil models: the elastic-perfectly plastic model with Mohr-Coulomb plastic criteria (MC) model and the Hardening Soil (HS) model. The resulting settlement values were compared with surveying measurements taken during and after the building’s construction. In the summary the results obtained with the use of different constitutive models, the calculation process and the adopted soil parameters are analysed and discussed.


2015 ◽  
Vol 741 ◽  
pp. 179-182
Author(s):  
Yan Min Shu ◽  
Yong Li Liu

Contrast simulation analysis under different cutting distance between top lane, cut the top lane area stress state, according to different stress state analysis of the optimal cutting top lane spacing, so as to realize the optimization of cutting top lane setting parameters.Results show that due to the inhomogeneity of rock strength, the main roof breaking are mainly shear stress play a role, as a result, the vertical stress of roof fracture need conditions may be much smaller than mine pressure strength limit.Considering cutting top lane for the larger spacing, cutting the top coal lane area of stress concentration degree is higher, easy to cause impact danger, from this aspect to consider cutting the top lane spacing should be small as far as possible, but the spacing is too small and cut the top lane roadway of quantities will increase, at the same time has the potential to cut two top lane of the superposition of stress, high impact and increase the working face danger.


Sign in / Sign up

Export Citation Format

Share Document