Change in pore size distribution owing to secondary consolidation of clays

1991 ◽  
Vol 28 (1) ◽  
pp. 20-24 ◽  
Author(s):  
Fred J. Griffiths ◽  
Ramesh C. Joshi

The preliminary results of a study using mercury-intrusion porosimetry on freeze-dried samples of clayey soils are presented. The amount of secondary consolidation has been varied for several samples of three soil types by holding the consolidation stress steady at 120 kPa for different durations. Examination of the pore size distribution curves reveals that secondary consolidation cannot be due solely to the deformation of micropores. The relative degree of change in total, free and entrapped porosity appears to be related to the proportion of each initially in the sample. Key words: clays, consolidation, compressibility, fabric-structure of soils, secondary compression.


2003 ◽  
Vol 43 (6) ◽  
pp. 63-73 ◽  
Author(s):  
Hiroyuki Tanaka ◽  
Dinesh R. Shiwakoti ◽  
Naoki Omukai ◽  
Fusao Rito ◽  
Jacques Locat ◽  
...  


2000 ◽  
Vol 37 (2) ◽  
pp. 393-405 ◽  
Author(s):  
Dayakar Penumadu ◽  
John Dean

The objective of the present research is to quantitatively evaluate the compression that can occur during the evaluation of pore-size distribution of cohesive soil using mercury intrusion porosimetry (MIP). A new experimental procedure was developed that can be routinely used to evaluate the corrections associated with the compressibility for porous solid samples using MIP. The approach used in this study involves performing mercury intrusion tests on dehydrated kaolin samples using freeze-dried and oven-dried techniques, and on identical samples confined by low-porosity latex membranes. Corrections for latex intrusion and issues related to dehydration of samples are addressed. The measured contact angle of mercury with kaolin clay using the sessile drop technique was used in the data reduction. Repeatable test results were obtained throughout the testing program. The procedure for obtaining volume-change behavior under isotropic conditions for a large range of pressures using the mercury porosimeter is also presented for oven-dried samples. Scanning electron micrographs for intruded and compressed specimens are presented along with a discussion on the observed hysteresis in MIP test data. The test results for kaolin samples show substantive initial compression before the occurrence of actual intrusion. This resulted in errors associated with the interpretation of pore sizes with diameters in the range of 0.4-200 µm.Key words: mercury intrusion, clay, compression, correction, pore-size distribution, high pressure.





Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1454 ◽  
Author(s):  
Yong Zhang ◽  
Bin Yang ◽  
Zhengxian Yang ◽  
Guang Ye

Capturing the long-term performance of concrete must be underpinned by a detailed understanding of the pore structure. Mercury intrusion porosimetry (MIP) is a widely used technique for pore structure characterization. However, it has been proven inappropriate to measure the pore size distribution of cementitious materials due to the ink-bottle effect. MIP with cyclic pressurization–depressurization can overcome the ink-bottle effect and enables a distinction between large (ink-bottle) pores and small (throat) pores. In this paper, pressurization–depressurization cycling mercury intrusion porosimetry (PDC-MIP) is adopted to characterize the pore structure in a range of cementitious pastes cured from 28 to 370 days. The results indicate that PDC-MIP provides a more accurate estimation of the pore size distribution in cementitious pastes than the standard MIP. Bimodal pore size distributions can be obtained by performing PDC-MIP measurements on cementitious pastes, regardless of the age. Water–binder ratio, fly ash and limestone powder have considerable influences on the formation of capillary pores ranging from 0.01 to 0.5 µm.



2015 ◽  
Vol 52 (6) ◽  
pp. 808-811 ◽  
Author(s):  
C.W.W. Ng ◽  
J.L. Coo

The focus of this note is to investigate the hydraulic conductivity behavior of clay mixed with nanomaterials. Two different nanomaterials — namely, gamma-aluminum oxide powder (γ-Al2O3) and nano-copper oxide (CuO) — were selected and mixed with clay at different percentages (i.e., 2%, 4%, and 6%). Hydraulic conductivity tests were carried out in a flexible wall permeameter following the ASTM D5084 standard. Mercury intrusion porosimetry (MIP) tests were also carried out to determine the pore-size distribution. At 2% of γ-Al2O3 and nano-CuO, the hydraulic conductivity of clay decreased 30% and 45%, respectively. As the proportion of the nanomaterial increases, the reduction of hydraulic conductivity becomes less prominent as flow paths devoid of nanomaterials are unlikely. Reduction of hydraulic conductivity is due to the pores of clay being clogged by the nanomaterial. Pore-size distribution curves show that the largest pore size reduced by 20% when clay was mixed with 4% nano-CuO.



2016 ◽  
Vol 57 (5) ◽  
pp. 201-212 ◽  
Author(s):  
Weiren LIN ◽  
Manabu TAKAHASHI ◽  
Daisaku SATO ◽  
En-Chao YEH ◽  
Yoshitaka HASHIMOTO ◽  
...  


2017 ◽  
Vol 31 (1) ◽  
pp. 73-82 ◽  
Author(s):  
Milena Kercheva ◽  
Zofia Sokołowska ◽  
Mieczysław Hajnos ◽  
Kamil Skic ◽  
Toma Shishkov

Abstract The heterogeneity of soil physical properties of Fluvisols, lack of large pristine areas, and different moisture regimes on non-flooded and flooded terraces impede the possibility to find a soil profile which can serve as a baseline for estimating the impact of natural or anthropogenic factors on soil evolution. The aim of this study is to compare the pore size distribution of pristine Fluvisols on flooded and non-flooded terraces using the method of the soil water retention curve, mercury intrusion porosimetry, nitrogen adsorption isotherms, and water vapour sorption. The pore size distribution of humic horizons of pristine Fluvisols on the non-flooded terrace differs from pore size distribution of Fluvisols on the flooded terrace. The peaks of textural and structural pores are higher in the humic horizons under more humid conditions. The structural characteristics of subsoil horizons depend on soil texture and evolution stage. The peaks of textural pores at about 1 mm diminish with lowering of the soil organic content. Structureless horizons are characterized by uni-modal pore size distribution. Although the content of structural pores of the subsoil horizons of Fluvisols on the non-flooded terrace is low, these pores are represented by biopores, as the coefficient of filtration is moderately high. The difference between non-flooded and flooded profiles is well expressed by the available water storage, volume and mean radius of pores, obtained by mercury intrusion porosimetry and water desorption, which are higher in the surface horizons of frequently flooded Fluvisols.



1988 ◽  
Vol 137 ◽  
Author(s):  
Mitsunori Kawamura ◽  
Kazuyuki Torii

AbstractThe effects of curing conditions on the chloride permeability of concrete with various replacements of Portland cement by a flyash and a blastfurnace slag was investigated. In order to relate the porosity and pore size distribution of concretes to their chloride permeability, mercury intrusion porosimetry measurements were also conducted. The results showed that exposure of concretes to a relatively low humidity at early ages increased their chloride permeability. It was also found that the chloride permeability of concrete increased proportionally with increasing volume of pores larger than 0.1 μm in diameter.



Sign in / Sign up

Export Citation Format

Share Document