In situ tests in a sand dune

1991 ◽  
Vol 28 (2) ◽  
pp. 304-309
Author(s):  
J.-M. Konrad

A field testing program using an electric piezocone penetrometer (CPTU) and a flat dilatometer (DMT) probe was carried out in a sand dune. The analysis of the field data in terms of relative density using current empirical correlations showed that significant differences were obtained at this site. It is suggested that any empirical correlation between relative density and CPT or DMT data obtained from calibration chambers should only be used for a sand that has the same slope of the steady-state line as the sand used in the calibration tests. Key words: sand, in situ density, field investigation, piezocone penetrometer, flat dilatometer, steady state.

1990 ◽  
Vol 27 (2) ◽  
pp. 167-176
Author(s):  
R. G. Campanella ◽  
R. Hitchman ◽  
W. E. Hodge

An in situ densification probe that employs the novel technique of simultaneous vibration and dewatering has been developed by Phoenix Engineering Ltd. to compact deep, loose, granular soils. It is believed that pumping water out of the soil during the densification process offers improved densification capability over systems operating with vibration alone. An independent study was undertaken by the In-Situ Testing Group at the University of British Columbia to evaluate the performance of the Phoenix system.A field testing programme was conducted at a site in Vancouver where hydraulic sand fill overlies a natural silt and then medium Fraser River sand. Characterization of the site and evaluation of the densification treatment process were achieved using in situ tests. Changes to soil parameters due to densification treatment were examined, taking into account the modification of stresses brought about by the vibro-drainage process. The study investigated the degree of densification achieved, the value of concurrent drainage, the zone of influence of a single compaction probe, and group effects. The study also compares the performance of the Phoenix machine with that of other vibrocompaction equipment. Key words: in situ, densification, soils, granular, probe, vibratory, drainage, compaction, R&D.


2011 ◽  
Vol 90-93 ◽  
pp. 633-638
Author(s):  
Zhen Zhong Cao ◽  
Xiao Ming Yuan

Banqiao school building had to be demolished for rebuilding because of severe damage induced by liquefaction following the 2008 Wenchuan Ms 8.0 Earthquake. The mechanism of the building damage and the characteristics of liquefied soils were investigated by trench, borehole drilling, and Dynamic Penetration Test. The detailed field investigation and in-situ tests show that: (1) The Banqiao school building suffered more severe damages than its surrounding buildings from the liquefaction rather than inertia force of shaking during the earthquake; (2) The subsurface liquefied soils are gravelly soils at the depth of 3.0 to 6.1m, which are significant different from the ejected fine sands; (3) It is unreasonable to regard gravels as non-liquefiable soils and a new procedure for gravels liquefaction evaluation need to be developed.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4743
Author(s):  
Tomasz Janoszek ◽  
Zbigniew Lubosik ◽  
Lucjan Świerczek ◽  
Andrzej Walentek ◽  
Jerzy Jaroszewicz

The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the ventilation network of the Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet changes in the mixture of air and water vapor along the excavation at a distance was measured at 10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained results of in situ tests were related to the results of numerical calculations using computational fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX software. The dimensions and geometry of the excavation under investigation are presented. The authors describe the adopted assumptions and conditions for the numerical model and discuss the results of the numerical solution.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hailin Zhang ◽  
João Antonangelo ◽  
Chad Penn

AbstractPortable X-ray fluorescence (pXRF) spectrometer allows fast in-situ elemental determination without wet digestion for soils or geological materials, but the use of XRF on wet materials is not well documented. Our objective was to develop a rapid field method using pXRF to measure metals in the residues from horizontal directional drilling (HDD) operations so that proper disposal decisions can be made in-situ. To establish the procedure, we spiked soil samples with 4 concentrations of Cr, Ni, Cu, Zn, As, Cd, and Pb up to 1000 mg kg−1, and then the metal concentrations were determined by wet chemical method after drying and acid digestion (standard method), and by pXRF, also at laboratory conditions, after drying and at two different moisture conditions. The measurements by pXRF and standard method after drying and after removal of excess water (AREW) were highly correlated with slopes ranging from 0.83 ± 0.01 to 1.08 ± 0.01 (P < 0.001) for all metals. The relationship was better AREW than the saturated paste without removal of excess water and the moisture content affected only the accuracy of As, Cd, and Pb. The procedure established was successfully used for HDD residues collected from 26 states of US with moisture content ranging from 14 to 83% AREW. The pXRF was proven to be a reliable tool for fast detection of common metals in dried soils and HDD residues, and samples containing < 30% moisture content without needing to correct for moisture. If the moisture is > 30%, excess water in samples need to be removed with a commercially available filter press to achieve high accuracy. The developed procedures reduce time of metal detection from days to about an hour which allows drilling operators to make quick decisions on soil or HDD disposal.


2021 ◽  
Vol 6 (7) ◽  
pp. 99
Author(s):  
Christian Overgaard Christensen ◽  
Jacob Wittrup Schmidt ◽  
Philip Skov Halding ◽  
Medha Kapoor ◽  
Per Goltermann

In proof-loading of concrete slab bridges, advanced monitoring methods are required for identification of stop criteria. In this study, Two-Dimensional Digital Image Correlation (2D DIC) is investigated as one of the governing measurement methods for crack detection and evaluation. The investigations are deemed to provide valuable information about DIC capabilities under different environmental conditions and to evaluate the capabilities in relation to stop criterion verifications. Three Overturned T-beam (OT) Reinforced Concrete (RC) slabs are used for the assessment. Of these, two are in situ strips (0.55 × 3.6 × 9.0 m) cut from a full-scale OT-slab bridge with a span of 9 m and one is a downscaled slab tested under laboratory conditions (0.37 × 1.7 × 8.4 m). The 2D DIC results includes full-field plots, investigation of the time of crack detection and monitoring of crack widths. Grey-level transformation was used for the in situ tests to ensure sufficient readability and results comparable to the laboratory test. Crack initiation for the laboratory test (with speckle pattern) and in situ tests (plain concrete surface) were detected at intervals of approximately 0.1 mm to 0.3 mm and 0.2 mm to 0.3 mm, respectively. Consequently, the paper evaluates a more qualitative approach to DIC test results, where crack indications and crack detection can be used as a stop criterion. It was furthermore identified that crack initiation was reached at high load levels, implying the importance of a target load.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Ghadami ◽  
E. Taheri-Nassaj ◽  
H. R. Baharvandi ◽  
F. Ghadami

AbstractHfB2, Si, and activated carbon powders were selected to fabricate 0–30 vol% SiC reinforced HfB2-based composite. Pressureless sintering process was performed at 2050 °C for 4 h under a vacuum atmosphere. Microstructural studies revealed that in situ SiC reinforcement was formed and distributed in the composite according to the following reaction: Si + C = SiC. A maximum relative density of 98% was measured for the 20 vol% SiC containing HfB2 composite. Mechanical investigations showed that the hardness and the fracture toughness of these composites were increased and reached up to 21.2 GPa for HfB2-30 vol% SiC and 4.9 MPa.m1/2 for HfB2-20 vol% SiC, respectively. Results showed that alpha-SiC reinforcements were created jagged, irregular, and elongated in shape which were in situ formed between HfB2 grains and filled the porosities. Formation of alpha-SiC contributed to improving the relative density and mechanical properties of the composite samples. By increasing SiC content, an enhanced trend of thermal conductivity was observed as well as a reduced trend for electrical conductivity.


2021 ◽  
Vol 16 (4) ◽  
pp. 121-137
Author(s):  
Michele Fabio Granata

The case-study of a steel bowstring bridge set in a marine environment and highly damaged by corrosion is presented. The bridge was built in 2004 and was repainted for corrosion protection in 2010. Despite the recent construction and the maintenance interventions, many structural elements like hangers are highly damaged by corrosion with decreasing performance in terms of serviceability and ultimate limit states. A deep investigation was carried out in order to assess the bridge and to establish the necessary retrofit actions to be carried out in the near future. In-situ tests reveal the reduced performance of the original steel in terms of strength and corrosion protection, together with the inefficiency of the successive maintenance interventions. The paper presents assessment of the bridge and retrofit measures, including replacement of the hangers and galvanization through thermal spray coating technology, in order to increase its service life. The results of the investigations and the intervention measures are outlined and discussed.


Sign in / Sign up

Export Citation Format

Share Document