THE SELF-DAMPING CHARACTERISTICS OF A MAGNETIC CONSTRAINED FULLY COVERED SANDWICH CANTILEVER BEAM

2005 ◽  
Vol 29 (3) ◽  
pp. 333-341 ◽  
Author(s):  
Ming Li ◽  
Zeng He

The Rayleigh-Ritz method is applied for the damping analysis of flexural vibration of a fully covered double sandwich-type cantilever beam with the attraction arrangement magnets on the constraining layers root. The analysis is carried out in terms of resonant frequencies and associated modal system loss factors. Single-term solutions for respective modes are assumed for the longitudinal displacements of the constraining layer and the transverse displacement of the beam. The modeling is validated experimentally. The improvement of damping characteristics using the magnetic constrained layer damping treatment under different physical and geometrical parameters has been reported.

1987 ◽  
Vol 109 (3) ◽  
pp. 241-247 ◽  
Author(s):  
A. K. Lall ◽  
N. T. Asnani ◽  
B. C. Nakra

The Rayleigh-Ritz method is applied for the damping analysis offlexural vibrations of a simply supported plate, partially covered with constrained viscoelastic damping treatment. The anaysis is carried out in terms of resonant frequencies and associated modal system loss factors. Single-term solutions for respective modes are assumed for the longitudinal displacements of the constraining layer and the transverse displacement of the plate. The variations of the resonant frequency and the associated modal loss factor with the coverage percentage, the coverage location, the core shear modulus and the thickness of the constrained and the constraining layers have been reported.


2012 ◽  
Vol 450-451 ◽  
pp. 466-471
Author(s):  
Ming Li ◽  
Hui Ming Zheng

Significant improvement of damping characteristics can be achieved by using the new class of magnetic constrained layer damping treatment (MCLD). This paper presents the damping properties of the first and second torsional mode for a five-layer cantilever rectangular plate treated with partial MCLD. The Rayleigh-Ritz method and Hamilton’s principle are employed in the analysis. We have chosen both single and segmented patches with different sizes. It can be observed that for the two modes single-patched MCLD treatment induces less improvement of damping characteristics especially for the short patch. The effects of calculation of parameters like placement strategies of discrete patches, the length of patches are analyzed and discussed. The results obtained from analytical show that the optimum location of the patch, for the torsional mode, is at edge of the plate. Favorable comparisons with the conventional passive constrained layer damping treatment (PCLD) on various special cases of the problem are obtained. The results demonstrate MCLD treatment still improvements over PCLD in damping structural vibrations.


2017 ◽  
Vol 23 (9) ◽  
pp. 1291-1302 ◽  
Author(s):  
S Sorrentino ◽  
G Catania

This study investigates the dynamic behaviour of plates crossed by distributed moving gravitational and inertial loads, in the case in which the relative magnitude of the moving mass introduces a coupling effect with the structure, with possible applications to the vibration analysis of railway bridges. A rectangular Kirchhoff plate is considered, simply supported on two opposite edges and free on the other two edges, loaded by a partially distributed mass travelling in the parallel direction with respect to the free edges. The formulation includes damping, and it is accomplished by the Rayleigh–Ritz method, expressing the solution in semi-analytical form. The shape functions for describing the transverse displacement field of the plate are selected as tensor products of linearly independent eigenfunctions of homogeneous uniform beams in flexural vibration, yielding a low-order model with time-dependent coefficients. Numerical examples are then presented and discussed, aimed at investigating the effects of each of the model governing parameters.


2014 ◽  
Vol 14 (08) ◽  
pp. 1440021
Author(s):  
Xiaoling Bai ◽  
Yumei Wen ◽  
Ping Li ◽  
Jin Yang ◽  
Xiao Peng ◽  
...  

Cantilever beams have found intensive and extensive uses as underlying mechanisms for energy transduction in sensors as well as in energy harvesters. In magnetoelectric (ME) transduction, the underlying cantilever beam usually will undergo magnetic coupling effect. As the beam itself is either banded with magnetic transducer or magnets, the dynamic motion of the cantilever can be modified due to the magnetic force between the magnets and ME sensors. In this study, the dynamic response of a typical spiral cantilever beam with magnetic coupling is investigated. The spiral cantilever acts as the resonator of an energy harvester with a tip mass in the form of magnets, and a ME transducer is positioned in the air gap and interacts with the magnets. It is expected that this spiral configuration is capable of performing multiple vibration modes over a small frequency range and the response frequencies can be magnetically tunable. The experimental results show that the magnetic coupling between the magnets and the transducer plays a favorable role in achieving tunable resonant frequencies and reducing the frequency spacings. This will benefits the expansion of the response band of a device and is especially useful in energy harvesting.


1954 ◽  
Vol 21 (4) ◽  
pp. 365-370
Author(s):  
B. W. Andersen

Abstract Using the method published by Ritz in 1909, natural frequencies and corresponding node lines have been determined for two symmetric and two antisymmetric modes of vibration of isosceles triangular plates clamped at the base and having length-to-base ratios of 1, 2, 4, and 7 and for the two lowest modes of right triangular plates clamped along one leg and having ratios of the length of the free leg to that of the clamped one of 2, 4, and 7. A nonorthogonal co-ordinate system was used which gave constant limits of integration over the area of the triangle. The co-ordinate transformation made it necessary to modify the functions used by Ritz in approximating deflections and to consider cross products in the integration. The integration was done numerically, using tables compiled by Young and Felgar in 1949. To check the accuracy of results, a solution was obtained to the problem of a vibrating cantilever beam of uniform depth and triangular plan view. The results obtained were found to be consistent with those obtained for the plates by using an eight-term series to approximate the deflections of the symmetric plates (isosceles triangles) and a six-term series to approximate the deflections of the unsymmetric plates (right triangles).


2018 ◽  
Vol 2018 ◽  
pp. 1-22
Author(s):  
Yiming Liu ◽  
Zhuang Lin ◽  
Hu Ding ◽  
Guoyong Jin ◽  
Sensen Yan

A modified Fourier–Ritz method is developed for the flexural and in-plane vibration analysis of plates with two rectangular cutouts with arbitrary boundary conditions, aiming to provide a unified solving process for cases that the plate has various locations or sizes of cutout, and different kinds of boundary conditions. Under the current framework, modifying the position of the cutout or the boundary conditions of the plate is just as changing the geometric parameters of the plate, and there is no need to change the solution procedures. The arbitrary boundary conditions can be obtained by setting the stiffness constant of the boundary springs which are fixed uniformly along the edges of the plate at proper values. The strain and kinetic energy functions of a plate with rectangular cutout are derived in detail. The convergence and accuracy of the present method are demonstrated by comparing the present results with those obtained from the FEM software. In this paper, free in-plane and flexural vibration characteristics of the plate with rectangular cutout under general boundary conditions are studied. From the results, it can be found that the geometric parameters and positions of the cutout and the boundary conditions of the plate will obviously influence the natural vibration characteristics of the structures.


Author(s):  
Qingzhao Zhou ◽  
David He ◽  
Yaping Zhao

In this paper, the stochastic properties of a uniform Timoshenko cantilever beam are investigated systematically. Based on the external viscous damping and Kelvin–Voigt viscoelastic damping, the partial differential equations of the Timoshenko beam subjected to random excitation are derived. The applied load is the concentrated force, and the excitation related to includes the ideal white noise, the band-limited white noise, and the exponential noise. Expressions are obtained for the space–time correlation functions and the space–frequency power spectral density functions of the transverse displacement response. The evident improvement is that the infinite integral and the definite integration in the mean square responses are worked out by means of the residue integral method and the integration by partial fraction, and the exact solutions of the mean square response are obtained in the form of an infinite series finally. This improvement provides a basis for both the mode truncation and the modal cross-spectral densities whether which can be ignored. Providing the numerical example, the numerical results obtained show the effectiveness of the theoretical analysis.


Author(s):  
Zhenghao Yang ◽  
Erkan Oterkus ◽  
Selda Oterkus

Abstract In this study, a novel higher-order peridynamic beam formulation is presented. The formulation is obtained by using Euler-Lagrange equations and Taylor’s expansion. To demonstrate the capability of the presented approach, several different beam configurations are considered including simply supported beam subjected to distributed loading, simply supported beam with concentrated load, clamped-clamped beam subjected to distributed loading, cantilever beam subjected to a point load at its free end and cantilever beam subjected to a moment at its free end. Transverse displacement results along the beam obtained from peridynamics and finite element method are compared with each other and very good agreement is obtained between the two approaches.


1994 ◽  
Vol 116 (2) ◽  
pp. 141-145 ◽  
Author(s):  
K. M. Liew

Treated in this paper is the free-flexural vibration analysis of symmetrically laminated thin circular plates. The total energy functional for the laminated plates is formulated where the pb-2 Ritz method is applied for the solution. The assumed displacement is defined as the product of (1) a two-dimensional complete polynomial function and (2) a basic boundary function. The simplicity and accuracy of the numerical procedure will be demonstrated by solving some plate examples. In the present study, the effects of material properties, number of layers and fiber stacking sequences upon the vibration frequency parameters are investigated. Selected mode shapes by means of contour plots for several 16-ply laminated plates with different fiber stacking sequences and composite materials are presented. This study may provide valuable information for researchers and engineers in design applications. In addition, the present solution plays an important role in increasing the existing data base for future references.


Sign in / Sign up

Export Citation Format

Share Document