SOFT BODY IMPACT SIMULATION ON COMPOSITE STRUCTURES

2008 ◽  
Vol 32 (2) ◽  
pp. 283-296 ◽  
Author(s):  
M. Nejad Ensan ◽  
D.G. Zimcik ◽  
M. Lahoubi ◽  
D. Andrieu

The paper describes recent progress on numerical simulation of soft body impact onto a fibre reinforced composite wing leading edge structure. The work is based on the application of non-linear explicit finite element analysis to simulate the response of composite wing structures under soft body impact loads. Soft body impactors such as gelatine (substitute bird) or ice (hailstones) are highly deformable on impact and flow over the structure spreading the impact load. Therefore, first benchmark simulations were carried out for soft body impact onto a rigid target. Soft body impactor was modeled using the Arbitrary Lagrangian-Eulerian (ALE) method. The results obtained using this impact model for different velocity were compared to the experimental test results in terms of local pressure, including Hugoniot and stagnation pressures, and global load to validate the accuracy of the model. Then, the impact of soft body onto a composite wing structures was described. A composite failure model which includes ply damage and interplay delamination model has been used to predict impact damage in the structure modeled using shell elements. The simulation tool predicts the impact damage in leading edge structure.

2014 ◽  
Vol 493 ◽  
pp. 672-677
Author(s):  
Nurihan Omar ◽  
Yulfian Aminanda ◽  
Jaffar S. Mohamed Ali

This paper works on the curvature composite structure for wing leading edge application using fabric carbon/epoxy material subjected to impact loading. At first stage, rigid spherical projectile and elliptical panel with were used. The impact testing has been carried out by varying the radius of curvature, the thickness of the panel and different stacking sequence. The experimental results show the trend of specific energy absorption capability of structure in function of the radius, thickness of panel and carbon fiber directions.


2014 ◽  
Vol 617 ◽  
pp. 104-109 ◽  
Author(s):  
Milan Žmindák ◽  
Zoran Pelagić ◽  
Maroš Bvoc

In the recent years a big focus is subjected to the response of structures subjected to out-of-plane loading such as blasts, impact, etc. not only to homogenous materials, but also to heterogeneous materials, such as composites. Such form of loading can cause considerable damage to the structure. In the case of layered composite materials the damage can have several forms, starting from damage in layers up to delamination and full damage of the construction. This paper describes the investigation of shockwave propagation in composite structures caused by impact loading. The composite consists of carbon fibers in a polymer matrix, in which the fibers are much stiffer then the matrix. Finite element simulations were carried out for a “bird” strike impact on a composite wing leading edge. Results show a good impact resistance and good damping abilities of shockwaves.


2012 ◽  
Vol 525-526 ◽  
pp. 365-368
Author(s):  
Chun Lin Chen ◽  
Yu Long Li ◽  
Fuh Gwo Yuan

Based on the self-focusing property of time-reversal (T-R) concept, a time focusing parameter was suggested to improve the impact source identification method developed in authors previous work. This paper presents a further study on monitoring relatively high energy impact events which caused induced damage on structures. Numerical verifications for a finite isotropic plate and a composite plate under low velocity impacts are performed to demonstrate the versatility of T-R method for impact location detection with induced plastic deformation and delamination damage on metallic and composite structures respectively. The focusing property of T-R concept was adequately utilized to detect impact/damage location. The results show that impact events with various features can be localized using T-R method by introducing the time focusing parameter. It is suited to monitor serious impact events on plate like structures in practice in future.


2020 ◽  
Vol 10 (2) ◽  
pp. 684 ◽  
Author(s):  
Mohamad Zaki Hassan ◽  
S. M. Sapuan ◽  
Zainudin A. Rasid ◽  
Ariff Farhan Mohd Nor ◽  
Rozzeta Dolah ◽  
...  

Banana fiber has a high potential for use in fiber composite structures due to its promise as a polymer reinforcement. However, it has poor bonding characteristics with the matrixes due to hydrophobic–hydrophilic incompatibility, inconsistency in blending weight ratio, and fiber length instability. In this study, the optimal conditions for a banana/epoxy composite as determined previously were used to fabricate a sandwich structure where carbon/Kevlar twill plies acted as the skins. The structure was evaluated based on two experimental tests: low-velocity impact and compression after impact (CAI) tests. Here, the synthetic fiber including Kevlar, carbon, and glass sandwich structures were also tested for comparison purposes. In general, the results showed a low peak load and larger damage area in the optimal banana/epoxy structures. The impact damage area, as characterized by the dye penetration, increased with increasing impact energy. The optimal banana composite and synthetic fiber systems were proven to offer a similar residual strength and normalized strength when higher impact energies were applied. Delamination and fracture behavior were dominant in the optimal banana structures subjected to CAI testing. Finally, optimization of the compounding parameters of the optimal banana fibers improved the impact and CAI properties of the structure, making them comparable to those of synthetic sandwich composites.


2014 ◽  
Vol 23 (5) ◽  
pp. 096369351402300
Author(s):  
Andrzej Katunin ◽  
Pawel Kostka

This paper presents the novel approach for the impact damage characterisation of composite structures, which is based on fusion of ultrasonic scans and optical images. Both internal (inter-fibre failure, fibre failure, delaminations) and external (scratches and surface cracks) damages occurred in the composite structures during their operation need to be analysed due to their occurrence on both of these levels, especially in the case of impact damages. The presented approach allows for the improvement of the characterisation quality, i.e. the whole damaged area could be detected and localized. In order to assure the proper damage identification the wavelet-based fusion with application of appropriate wavelets and parameters of a fusion algorithm was used, which allows for distinction of different types of damages and overall improvement of the resulted image with respect to the human perception capability. The approach was validated experimentally on the glass-epoxy laminated plates after the low-velocity impacts. Representative cases of damaged structure were presented and analysed.


2018 ◽  
Vol 7 (4.26) ◽  
pp. 175
Author(s):  
Noorfaten Asyikin Ibrahim ◽  
Bibi Intan Suraya Murat

This paper investigates the propagation of guided ultrasonic waves and the interaction with impact damage in composite plates using a full three-dimensional Finite Element analysis. Impact damage in the composite plate was modeled as rectangular- and T-shaped delaminations. In order to provide guidelines for extending the modeling of realistic multimode impact damage, the impact damage was modeled as a combination of the delamination and reduced materials properties. The information obtained from these methods was compared to the experimental results around the damage area for a validation. There was a reasonable similarity between the experimental and FE results. The FE simulations can effectively model the scattering characteristics of the A0 mode wave propagation in anisotropic composite plates. This suggests that the simplified and easy-to-implement FE model could be used to represent the complex impact damage in composite plates. This could be useful for the improvement of the FE modeling and performance of guided wave methods for the in-situ NDE of large composite structures. 


2021 ◽  
Vol 260 ◽  
pp. 03021
Author(s):  
Jun He ◽  
Meng Cao ◽  
Zhishu Wang ◽  
Fanglin Cong

Although the carbon fiber reinforced composite material has high specific strength and stiffness, design-versatility, anti-corrosion and other excellent features, but the impact resistance of composite structures is poor. Therefore, the composite laminates low-speed damage analysis has important significance. Based on a three-dimensional analysis theory of cumulative damage, using the commercial finite element analysis software ABAQUS to establish laminates subjected to low velocity impact finite element model. according to the numerical results and the consistency of the test results, shows that the used model of the article is reasonable and accurate, and the numerical simulation method is verified to be feasible. Finally, through the numerical simulation of process of laminated plates low speed impact damage, the damage characteristics and damage mechanism of the laminates at different times are analyzed, and the forming reasons and expanding rules of the main damage forms of fiber damage and matrix damage are revealed.


2020 ◽  
pp. 4-11
Author(s):  
L. N. Stepanova ◽  
V. V Chernova ◽  
M. A. Miloserdova

Investigations of three groups of samples from carbon fiber T 700 and the composite wing box of the aircraft were carried out. Samples with monolayers laying 0; 90; –45 were subjected to shock loads, which were applied at their center with a load in the form of a blunt tip weighing 0.53 kg. Loads were dumped from a height of 0,3; 0,5; 1 m per sample. Impact damage with an energy of 15 J was also applied to the upper surface of the carbon fiber wing box. Acoustic emission (AE) signals were recorded from the piezoelectric antenna sensors mounted on the wing samples and box both during the impact of the weight with the object under study and during rebounds. The locations where the shock load were applied were located and the parameters of the AE signals were analyzed. The influence of the type of monolayer laying on the process of cracking in the material of the samples arising at different energy of shock loads was determined.


2004 ◽  
Author(s):  
Frank J. Shih ◽  
Sauvik Banerjee ◽  
Ajit K. Mal

This paper is concerned with the real-time detection of internal damage in composite structural components during impact using the far-field surface motion generated by these events. Impact tests are carried out on graphite epoxy composite plates using an instrumented impact testing system. Contact force and surface motion are measured at several locations on the plate surface. The far-field surface motions, both flexural and extensional waves in the composite plate, are modeled using both approximate and exact solution methods. Postimpact test were performed to determine the extent of internal damage caused by the impact load. Further research on the detection method can lead to the development of a viable impact monitoring system for composite aerospace structures using distributed sensors.


2017 ◽  
Vol 754 ◽  
pp. 279-282
Author(s):  
Aniello Riccio ◽  
A. Russo ◽  
Andrea Sellitto ◽  
G. Pezone ◽  
J. San Millan ◽  
...  

In this paper, the damage behaviour of aerospace composite structures has been studied. The analysed structure is an all-composite wing with inter-laminar manufacturing induced damage. The manufacturing induced delaminations are located at the leading edge on the extrados and in the area near the fuselage. Different analyses have been performed to correctly predict the pre-existent damages evolution under service loading conditions. Preliminary linear buckling analyses have been performed to check for instability of the delaminations under service loads; then the risk of delaminations’ propagation has been evaluated by means of a Virtual Crack Closure Technique based approach.


Sign in / Sign up

Export Citation Format

Share Document