THE PHOTOLYSIS OF KETENE AT LOW TEMPERATURES

1957 ◽  
Vol 35 (10) ◽  
pp. 1137-1138 ◽  
Author(s):  
W. G. Paterson ◽  
H. Gesser

The photochemical decomposition of ketene at 2700 Å has been investigated at −78 °C. The quantum yield of carbon monoxide is two, indicating that the recombination of methylene radicals does not occur at this low temperature.

The photochemical decomposition of hydrogen sulphide has been investigated at pressures between 8 and 550 mm of mercury and at temperatures between 27 and 650° C, using the narrow cadmium line ( λ 2288) and the broad mercury band (about λ 2550). At room temperature the quantum yield increases with pressure from 1.09 at 30 mm to 1.26 at 200 mm. Above 200 mm pressure there was no further increase in the quantum yield. Temperature had little effect on the quantum yield at λ 2550, but there was a marked increase in the rate of hydrogen production between 500 and 650° C with 2288 Å radiation. This may have been caused by the decomposition of excited hydrosulphide radicals. The results are consistent with a mechanism involving hydrogen atoms and hydrosulphide radicals. The mercury-photosensitized reaction is less efficient than the photochemical decomposition, the quantum yield being only about 0.45. The efficiency increased with temperature and approached unity at high temperatures and pressures. This agrees with the suggestion that a large fraction of the quenching collisions lead to the formation of Hg ( 3 P 0 ) atoms. The thermal decomposition is heterogeneous at low temperatures and becomes homogeneous and of the second order at 650° C. The experimental evidence suggests the bimolecular mechanism 2H 2 S → 2H 2 + S 2 . The activation energies are 25 kcal/mole (heterogeneous) and 50 kcal/mole (homogeneous).


1975 ◽  
Vol 53 (12) ◽  
pp. 1744-1755 ◽  
Author(s):  
David R. Dice ◽  
Ronald P. Steer

The direct photolyses of thietane, 3-ethyl-2-propylthietane, and 3-methylthietane in the vapor phase, in solution, and in glassy matrices at low temperatures have been examined. The effects of varying the photolysis wavelength, the temperature, the pressure and the phase of the substrate, and of adding inert thermalizers on the nature and yields of the various products have been measured. The results are interpreted in terms of initial C—S cleavage to give a 1,4-biradical which may, in the gas phase, decompose or ring close before complete equilibration of the various rotamers is achieved, or which may be thermalized in condensed media and trapped in glassy matrices at low temperature.


Author(s):  
F. H. Louchet ◽  
L. P. Kubin

Experiments have been carried out on the 3 MeV electron microscope in Toulouse. The low temperature straining holder has been previously described Images given by an image intensifier are recorded on magnetic tape.The microtensile niobium samples are cut in a plane with the two operative slip directions [111] and lying in the foil plane. The tensile axis is near [011].Our results concern:- The transition temperature of niobium near 220 K: at this temperature and below an increasing difference appears between the mobilities of the screw and edge portions of dislocations loops. Source operation and interactions between screw dislocations of different slip system have been recorded.


Alloy Digest ◽  
2008 ◽  
Vol 57 (1) ◽  

Abstract Invar is an Fe-Ni alloy with 36% Ni content that exhibits the lowest expansion of known metals from very low temperatures up to approximately 230 deg C (445 deg F). Invar M93 is a cryogenic Invar with improved weldability. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear and bend strength as well as fracture toughness and fatigue. It also includes information on low temperature performance as well as forming and joining. Filing Code: FE-143. Producer or source: Metalimphy Precision Alloys.


1996 ◽  
Vol 15 (12) ◽  
pp. 2829-2832 ◽  
Author(s):  
Matthew S. Sigman ◽  
Bruce E. Eaton ◽  
Jerald D. Heise ◽  
Clifford P. Kubiak

2014 ◽  
Vol 986-987 ◽  
pp. 80-83
Author(s):  
Xiao Xue Zhang ◽  
Zhen Feng Wang ◽  
Cui Hua Li ◽  
Jian Hong Liu ◽  
Qian Ling Zhang

N-methyl-N-allylpyrrolidinium bis (trifluoromethanesulfonyl) imide (PYR1ATFSI) with substantial supercooling behavior is synthesized to develop low temperature electrolyte for lithium-ion batteries. Additive fluoroethylene carbonate (FEC) in LiTFSI/PYR1ATFSI/EC/PC/EMC is found that it can reduce the freezing point. LiFePO4/Li coin cells with the FEC-PYR1ATFSI electrolyte exhibit good capacity retention, reversible cycling behavior at low temperatures. The good performance can be attributed to the decrease in the freezing point and the polarization of the composite electrolyte.


1972 ◽  
Vol 25 (7) ◽  
pp. 1411 ◽  
Author(s):  
LE Lyons ◽  
LJ Warren

The low-temperature fluorescence spectrum of purified vapour-grown anthracene single crystals is presented and the free-exciton emission distinguished from a number of defect or impurity bands present even in the purest crystals. In assigning the observed bands the symmetry of the active vibrations and the origin of background fluorescence and deformation bands are discussed. The phonon structure in the region of the fluorescence origin was found to be almost completely b-polarized. Emission of electronic origin (25103 cm-1) was too weak to be observed. Polarization ratios of the principal vibronio bands at 5.6 K are given.


2014 ◽  
Vol 14 (3) ◽  
pp. 479-488 ◽  
Author(s):  
T. Backhaus ◽  
R. de la Torre ◽  
K. Lyhme ◽  
J.-P. de Vera ◽  
J. Meeßen

AbstractSeveral investigations on lichen photobionts (PBs) after exposure to simulated or real-space parameters consistently reported high viability and recovery of photosynthetic activity. These studies focused on PBs within lichen thalli, mostly exposed in a metabolically inactive state. In contrast, a recent study exposed isolated and metabolically active PBs to the non-terrestrial stressor UVC254 nm and found strong impairment of photosynthetic activity and photo-protective mechanisms (Meeßen et al. in 2014b). Under space and Mars conditions, UVC is accompanied by other stressors as extreme desiccation and low temperatures. The present study exposed the PBs of Buellia frigida and Circinaria gyrosa, to UVC in combination with desiccation and subzero temperatures to gain better insight into the combined stressors' effect and the PBs' inherent potential of resistance. These effects were examined by chlorophyll a fluorescence which is a good indicator of photosynthetic activity (Lüttge & Büdel in 2010) and widely used to test the viability of PBs after (simulated) space exposure. The present results reveal fast recovery of photosynthetic activity after desiccation and subzero temperatures. Moreover, they demonstrate that desiccation and cold confer an additional protective effect on the investigated PBs and attenuate the PBs' reaction to another stressor – even if it is a non-terrestrial one such as UVC. Besides other protective mechanisms (anhydrobiosis, morphological–anatomical traits and secondary lichen compounds), these findings may help to explain the high resistance of lichens observed in astrobiological studies.


Sign in / Sign up

Export Citation Format

Share Document