Substituent effects upon cation–pseudobase equilibration for isoquinolinium and phthalazinium cations

1981 ◽  
Vol 59 (22) ◽  
pp. 3195-3199 ◽  
Author(s):  
John W. Bunting ◽  
Vivian S.-F. Chew ◽  
Shinta Sindhuatmadja

pKR+ values have been measured for cation–pseudobase equilibration by 4-X-2-methylisoquinolinium cations (1) (X = Br, CONH2, COC6H5, CN, NO2) at 25 °C, ionic strength 0.1. These pKR+ values are well correlated by Hammett equations using either σ or σ−para substituent constants. The best correlation gives: pKR+ = −8.8 (± 0.3) σp− + 16.5 (± 0.2) (r = 0.998). The value pKR+ = 16.29 measured by Cook et al. (Tetrahedron, 32, 1773 (1976)) for the 2-methylisoquinolinium cation in dimethyl sulfoxide – water solutions is in reasonable agreement with this correlation equation. For the 2-methyl-5-nitrophthalazinium cation, pKR+ = 7.87, and pKRO− = 12.10 for alkoxide ion formation by the pseudobase of this cation.The pH dependence of the pseudo first-order rate constants (kobs) for cation–pseudobase equilibration has been measured for 1:X = CONH2, COC6H5, CN and for the 2-methylphthalazinium cation (3) and its 5-NO2 derivative (4). For each of these cations, [Formula: see text] and kd = k1[H+] + k2 and the parameters [Formula: see text] have been evaluated. For 1:X = CONH2 and CN and 3, kOH is consistent with a correlation line between log kOH and pKR+ established for other isoquinolinium cations (J. Am. Chem. Soc. 99, 1189 (1977)). For 1:X = COC6H5, kOH is seven-fold smaller, and for 4, kOH is five-fold greater than predicted by this correlation line.


1988 ◽  
Vol 66 (10) ◽  
pp. 2524-2531 ◽  
Author(s):  
John W. Bunting ◽  
Mark A. Luscher

The kinetics of the reduction of the 3-cyano-1-methylquinolinium, 4-cyano-2-methylisoquinolinium, and 2-methyl-5-nitro-isoquinolinium cations by 9,10-dihydro-10-methylacridine, and also the reduction of these same three cations as well as the 10-methylacridinium cation by 5,6-dihydro-5-methylphenanthridine, have been investigated in 20% acetonitrile – 80% water, ionic strength 1.0, 25 °C. The reactions of the 2-methyl-5-nitroisoquinolinium cation with both reductants, and also of the 4-cyano-2-methylisoquinolinium cation with 9,10-dihydro-10-methylacridine, display kinetic saturation effects in the pseudo-first-order rate constants as a function of heterocyclic cation concentration. These effects are consistent with the formation of 1:1 association complexes between hydride donor and acceptor prior to the rate-determining step of the reduction. The second-order rate constants for these reactions, and also those for analogous heterocyclic cation reductions by 1,4-dihydronicotinamides, show systematic variations as a function of the hydride donor and acceptor species.



2006 ◽  
Vol 71 (11-12) ◽  
pp. 1557-1570 ◽  
Author(s):  
Vilve Nummert ◽  
Mare Piirsalu ◽  
Ilmar A. Koppel

The second-order rate constants k2 (dm3 mol-1 s-1) for the alkaline hydrolysis of substituted alkyl benzoates C6H5CO2R have been measured spectrophotometrically in aqueous 0.5 M Bu4NBr at 50 and 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH, CH2C6H5, CH2CH2Cl, CH2CH2OCH3, CH2CH3) and in aqueous 5.3 M NaClO4 at 25 °C (R = CH3, CH2Cl, CH2CN, CH2C≡CH). The dependence of the alkyl substituent effects on different solvent parameters was studied using the following equations:      ∆ log k = c0 + c1σI + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆EσI + c7∆YσI + c8∆PσI     ∆ log k = c0 + c1σ* + c2EsB + c3∆E + c4∆Y + c5∆P + c6∆Eσ* + c7∆Yσ* + c8∆Pσ* .  ∆ log k = log kR - log kCH3. σI and σ* are the Taft inductive and polar substituent constants. E, Y and P are the solvent electrophilicity, polarity and polarizability parameters, respectively. In the data treatment ∆E = ES - EH2O , ∆Y = YS - YH2O , ∆P = PS - PH2O were used. The solvent electrophilicity, E, was found to be the main factor responsible for changes in alkyl substituent effects with medium. When σI constants were used, variation of the polar term of alkyl substituents with the solvent electrophilicity E was found to be similar to that observed earlier for meta and para substituents, but twice less when σ* constants were used. The steric term for alkyl substituents was approximately independent of the solvent parameters.



1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).



1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.



1985 ◽  
Vol 40 (3-4) ◽  
pp. 215-218 ◽  
Author(s):  
Fritz Thümmler ◽  
Peter Eilfeld ◽  
Wolfhart Rüdiger ◽  
Doo-Khil Moon ◽  
Pill-Soon Song

The reactivity of the phytochrome chromophore and related tetrapyrroles towards ozone and tetranitromethane was investigated. Both oxidizing reagents cause bleaching of the main absorp­tion band of the pigment. The rate constants for this bleaching were determined under conditions of pseudo first order reaction kinetics. The rate constants for the reaction with ozone are similar for native phytochrome and for freely accessible tetrapyrroles (biliverdin, small chromopeptides from phytochrome) indicating that accessibility is not the limiting factor for the reaction with ozone. Under a variety of conditions, the Pfr chromophore reacts by about 10% faster than the Pr chromophore. This may reflect the true difference in reactivity. The rate constants for the reaction with tetranitromethane are much larger for biliverdin, bilirubin and small chromopeptides from phytochrome than for native phytochrome. The limiting factor for this reaction in native phytochrome therefore is the accessibility of the chromophore by the reagent. Previous conclusions on the difference in exposure of the tetrapyrrole chromophore in Pr and Pfr are confirmed.



2019 ◽  
Vol 44 (3) ◽  
pp. 244-256
Author(s):  
Rupal Yadav ◽  
Radhey Mohan Naik

The formation kinetics of the complex, [Ru(CN)5INH]3−, formed through the ligand substitution reaction between isoniazid (INH) and aquapentacyanoruthenate(II) ([Ru(CN)5H2O]3−), have been investigated, under pseudo first-order conditions, as a function of concentrations of [INH] and [Ru(CN)5H2O]3−, ionic strength and temperature at pH = 4.0 ± 0.02 in 0.2 M NaClO4 spectrophotometrically at 502 nm ( λmax of intense yellow colour product [Ru(CN)5INH]3−) corresponding to metal-to-ligand charge-transfer transitions, in aqueous medium. The pseudo first-order condition was maintained by taking at least 10% excess of [INH] over [Ru(CN)5H2O]3−. The stoichiometry of the reaction product was found to be 1:1 which was further supported and characterized using elemental analysis, infrared, nuclear magnetic resonance and mass spectrometric techniques. Thermodynamic and kinetic parameters have also been computed, using the Eyring equation, and the values of ΔH≠, Ea, ΔG≠ and ΔS≠ were found to be 47.3 kJ mol−1, 49.8 kJ mol−1, −8.62 kJ mol−1 and 187.6 J K−1mol−1, respectively. The reaction was found to obey first-order kinetics with respect to [INH]. It exhibited a negative salt effect on the rate upon variation of ionic strength of the medium. A tentative mechanistic scheme was proposed on the basis of experimental findings.



1993 ◽  
Vol 71 (6) ◽  
pp. 907-911 ◽  
Author(s):  
Michel Zoghbi ◽  
John Warkentin

Twelve Δ3-1,3,4-oxadiazolines in which C-2 is also C-4 of a β-lactam moiety (spiro-fused β-lactam oxadiazoline system) were thermolyzed as solutions in benzene. Substituents in the β-lactam portion affect the rate constant for thermal decomposition of the oxadiazolines to N2, acetone, and a β-lactam-4-ylidene. The total spread of first-order rate constants at 100 °C was 47-fold and the average value was 6.7 × 10−4 s−1. A phenyl substituent at N-1 or at C-3 was found to be rate enhancing, relative to methyl. At C-3, H and Cl were also rate enhancing, relative to methyl. The data are interpreted in terms of the differential effects of substituents on the stabilities of the ground states, and on the stabilities of corresponding transition states for concerted, suprafacial, [4π + 2π] cycloreversion. The first products, presumably formed irreversibly, are N2 and a carbonyl ylide. The latter subsequently fragments to form acetone (quantitative) and a β-lactam-4-ylidene.



1975 ◽  
Vol 28 (5) ◽  
pp. 1133 ◽  
Author(s):  
S Chan ◽  
S Tan

The pseudo first-order rate constants for the mercury(II)-induced aquation of trans-[Co(Hdmg)2(NH3)Cl] (Hdmg = dimethylglyoximate ion) have been measured in aqueous and aqueous ethanol solutions (ethanol- water mole ratio 1 : 5.1) containing various excess amounts of mercury(II)ion at 273.2 K. Association constants of the complex formed with mercury(II) ion and rate constants for dissociation of the activated complex in both solutions have been calculated. The kinetic results are discussed in terms of formation of an activated complex Co-C1-Hg, followed by a simple rate-determining aquation in which HgCl+ acts as the leaving group.



2011 ◽  
Vol 383-390 ◽  
pp. 2945-2950 ◽  
Author(s):  
Jie Zhang ◽  
Shi Long He ◽  
Mei Feng Hou ◽  
Li Ping Wang ◽  
Li Jiang Tian

The kinetics of TBBPA degradation by ozonation in semi-batch reactor was studied. The reaction rate constants of TBBPA with O3 and •OH were measured by means of direct ozone attack and competition kinetics, and the values of which were 6.10 l/(mol•s), 4.8×109 l/(mol•s), respectively. Results of kinetic studies showed that TBBPA degradation by ozonation under the different conditions tested followed the pseudo-first-order. The values of apparent rate constant of TBBPA degradation increased with the increase of ozone dosage and pH, but decreased with the increase of initial TBBPA concentration.



Sign in / Sign up

Export Citation Format

Share Document