A novel type of active site at the surface of crystalline SiO2 (a-quartz) and its possible impact on pathogenicity

1991 ◽  
Vol 69 (9) ◽  
pp. 1427-1434 ◽  
Author(s):  
Dominique Costa ◽  
Bice Fubini ◽  
Elio Giamello ◽  
Marco Volante

A new type of surface site, different from those previously described, which gives rise to a paramagnetic oxygen species upon adsorption of O2 at low temperature, has been found at the surface of crystalline quartz. This site is abundant on freshly cleaved surfaces or on chemically etched ones but absent on crystal growth faces or on samples annealed at high temperature. The abundance of this site is not related to the other surface radicals characteristic of the quartz surface originated by mechanical grinding in air. The EPR spectral features of the signal suggest an ozonide type radical O3−. The adsorption of oxygen onto quartz dusts variously treated in order to modulate their fibrogenic potential in vivo indicates that a relationship may exist between the presence of this site and quartz pathogenicity. Key words: quartz, oxygen radical species, ozonide, silicosis, EPR.

1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1981 ◽  
Vol 46 (03) ◽  
pp. 658-661 ◽  
Author(s):  
C Korninger ◽  
J M Stassen ◽  
D Collen

SummaryThe turnover of highly purified human extrinsic plasminogen activator (EPA) (one- and two-chain form) was studied in rabbits. Following intravenous injection, EPA-activity declined rapidly. The disappearance rate of EPA from the plasma could adequately be described by a single exponential term with a t ½ of approximately 2 min for both the one-chain and two-chain forms of EPA.The clearance and organ distribution of EPA was studied by using 125I-labeled preparations. Following intravenous injection of 125I-1abeled EPA the radioactivity disappeared rapidly from the plasma also with a t ½ of approximately 2 min down to a level of 15 to 20 percent, followed by a small rise of blood radioactivity. Gel filtration of serial samples revealed that the secondary increase of the radioactivity was due to the reappearance of radioactive breakdown products in the blood. Measurement of the organ distribution of 125I at different time intervals revealed that EPA was rapidly accumulated in the liver, followed by a release of degradation products in the blood.Experimental hepatectomy markedly prolonged the half-life of EPA in the blood. Blocking the active site histidine of EPA had no effect on the half-life of EPA in blood nor on the gel filtration patterns of 125I in serial plasma samples.It is concluded that human EPA is rapidly removed from the blood of rabbits by clearance and degradation in the liver. Recognition by the liver does not require a functional active site in the enzyme. Neutralization in plasma by protease inhibitors does not represent a significant pathway of EPA inactivation in vivo.


1997 ◽  
Vol 78 (04) ◽  
pp. 1202-1208 ◽  
Author(s):  
Marianne Kjalke ◽  
Julie A Oliver ◽  
Dougald M Monroe ◽  
Maureane Hoffman ◽  
Mirella Ezban ◽  
...  

SummaryActive site-inactivated factor VIIa has potential as an antithrombotic agent. The effects of D-Phe-L-Phe-L-Arg-chloromethyl ketone-treated factor VIla (FFR-FVIIa) were evaluated in a cell-based system mimicking in vivo initiation of coagulation. FFR-FVIIa inhibited platelet activation (as measured by expression of P-selectin) and subsequent large-scale thrombin generation in a dose-dependent manner with IC50 values of 1.4 ± 0.8 nM (n = 8) and 0.9 ± 0.7 nM (n = 7), respectively. Kd for factor VIIa binding to monocytes ki for FFR-FVIIa competing with factor VIIa were similar (11.4 ± 0.8 pM and 10.6 ± 1.1 pM, respectively), showing that FFR-FVIIa binds to tissue factor in the tenase complex with the same affinity as factor VIIa. Using platelets from volunteers before and after ingestion of aspirin (1.3 g), there were no significant differences in the IC50 values of FFR-FVIIa [after aspirin ingestion, the IC50 values were 1.7 ± 0.9 nM (n = 8) for P-selectin expression, p = 0.37, and 1.4 ± 1.3 nM (n = 7) for thrombin generation, p = 0.38]. This shows that aspirin treatment of platelets does not influence the inhibition of tissue factor-initiated coagulation by FFR-FVIIa, probably because thrombin activation of platelets is not entirely dependent upon expression of thromboxane A2.


1982 ◽  
Vol 47 (03) ◽  
pp. 269-274 ◽  
Author(s):  
R A G Smith ◽  
R J Dupe ◽  
P D English ◽  
J Green

SummaryA derivative of human lys-plasmin in which the active site has been reversibly acylated (BRL 26920; p-anisoyl human lys-plasmin) has been examined as a fibrinolytic agent in a previously described rabbit model of venous thrombosis and shown to be significantly more active and less fibrinogenolytic than free plasmin. A p-anisoylated derivative of a streptokinase (SK)-activated plasmin preparation was significantly less fibrinogenolytic in vivo than the non-acylated enzyme. Acylation increased the fibrinolytic activity of preparations of SK-plasmin activator complexes. BRL 26921, the active site anisoylated derivative of the primary 2-chain SK-plasminogen complex was the most potent fibrinolytic agent studied. SK-Val442-plasminogen complexes, free or acylated, were biologically inactive in this model and confirm the essential nature of fibrin binding processes for effective thrombolysis in vivo.


1984 ◽  
Vol 51 (02) ◽  
pp. 248-253 ◽  
Author(s):  
R J Dupe ◽  
P D English ◽  
R A G Smith ◽  
J Green

SummaryA quantitative model of venous thrombosis in the beagle dog is described. The model was adapted to permit ageing of isolated experimental clots in vivo. A model of acute pulmonary embolism in this species is also described. In the venous thrombosis model, infusion of streptokinase (SK) or SK-activated human plasmin gave significant lysis but bolus doses of SK. plasmin complex were ineffective. Active site anisoylated derivatives of SK. plasminogen complex, SK-activated plasmin and activator-free plasmin were all active when given as bolus doses in both models. At lytic doses, the acyl-enzymes caused fewer side-effects attributable to plasminaemia than the corresponding unmodified enzymes.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 21-29 ◽  
Author(s):  
David R H Evans ◽  
Brian A Hemmings

Abstract PP2A is a central regulator of eukaryotic signal transduction. The human catalytic subunit PP2Acα functionally replaces the endogenous yeast enzyme, Pph22p, indicating a conservation of function in vivo. Therefore, yeast cells were employed to explore the role of invariant PP2Ac residues. The PP2Acα Y127N substitution abolished essential PP2Ac function in vivo and impaired catalysis severely in vitro, consistent with the prediction from structural studies that Tyr-127 mediates substrate binding and its side chain interacts with the key active site residues His-118 and Asp-88. The V159E substitution similarly impaired PP2Acα catalysis profoundly and may cause global disruption of the active site. Two conditional mutations in the yeast Pph22p protein, F232S and P240H, were found to cause temperature-sensitive impairment of PP2Ac catalytic function in vitro. Thus, the mitotic and cell lysis defects conferred by these mutations result from a loss of PP2Ac enzyme activity. Substitution of the PP2Acα C-terminal Tyr-307 residue by phenylalanine impaired protein function, whereas the Y307D and T304D substitutions abolished essential function in vivo. Nevertheless, Y307D did not reduce PP2Acα catalytic activity significantly in vitro, consistent with an important role for the C terminus in mediating essential protein-protein interactions. Our results identify key residues important for PP2Ac function and characterize new reagents for the study of PP2A in vivo.


2009 ◽  
Vol 192 (2) ◽  
pp. 575-586 ◽  
Author(s):  
Seyeun Kim ◽  
Brian M. Swalla ◽  
Jeffrey F. Gardner

ABSTRACT CTnDOT integrase (IntDOT) is a member of the tyrosine family of site-specific DNA recombinases. IntDOT is unusual in that it catalyzes recombination between nonidentical sequences. Previous mutational analyses centered on mutants with substitutions of conserved residues in the catalytic (CAT) domain or residues predicted by homology modeling to be close to DNA in the core-binding (CB) domain. That work suggested that a conserved active-site residue (Arg I) of the CAT domain is missing and that some residues in the CB domain are involved in catalysis. Here we used a genetic approach and constructed an Escherichia coli indicator strain to screen for random mutations in IntDOT that disrupt integrative recombination in vivo. Twenty-five IntDOT mutants were isolated and characterized for DNA binding, DNA cleavage, and DNA ligation activities. We found that mutants with substitutions in the amino-terminal (N) domain were catalytically active but defective in forming nucleoprotein complexes, suggesting that they have altered protein-protein interactions or altered interactions with DNA. Replacement of Ala-352 of the CAT domain disrupted DNA cleavage but not DNA ligation, suggesting that Ala-352 may be important for positioning the catalytic tyrosine (Tyr-381) during cleavage. Interestingly, our biochemical data and homology modeling of the CAT domain suggest that Arg-285 is the missing Arg I residue of IntDOT. The predicted position of Arg-285 shows it entering the active site from a position on the polypeptide backbone that is not utilized in other tyrosine recombinases. IntDOT may therefore employ a novel active-site architecture to catalyze recombination.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhuochao Liu ◽  
Hongyi Wang ◽  
Chuanzhen Hu ◽  
Chuanlong Wu ◽  
Jun Wang ◽  
...  

AbstractIn this study, we identified the multifaceted effects of atezolizumab, a specific monoclonal antibody against PD-L1, in tumor suppression except for restoring antitumor immunity, and investigated the promising ways to improve its efficacy. Atezolizumab could inhibit the proliferation and induce immune-independent apoptosis of osteosarcoma cells. With further exploration, we found that atezolizumab could impair mitochondria of osteosarcoma cells, resulting in increased release of reactive oxygen species and cytochrome-c, eventually leading to mitochondrial-related apoptosis via activating JNK pathway. Nevertheless, the excessive release of reactive oxygen species also activated the protective autophagy of osteosarcoma cells. Therefore, when we combined atezolizumab with autophagy inhibitors, the cytotoxic effect of atezolizumab on osteosarcoma cells was significantly enhanced in vitro. Further in vivo experiments also confirmed that atezolizumab combined with chloroquine achieved the most significant antitumor effect. Taken together, our study indicates that atezolizumab can induce mitochondrial-related apoptosis and protective autophagy independently of the immune system, and targeting autophagy is a promising combinatorial approach to amplify its cytotoxicity.


Genetics ◽  
2001 ◽  
Vol 159 (1) ◽  
pp. 47-64 ◽  
Author(s):  
Youri I Pavlov ◽  
Polina V Shcherbakova ◽  
Thomas A Kunkel

Abstract Several amino acids in the active site of family A DNA polymerases contribute to accurate DNA synthesis. For two of these residues, family B DNA polymerases have conserved tyrosine residues in regions II and III that are suggested to have similar functions. Here we replaced each tyrosine with alanine in the catalytic subunits of yeast DNA polymerases α, δ, ε, and ζ and examined the consequences in vivo. Strains with the tyrosine substitution in the conserved SL/MYPS/N motif in region II in Polδ or Polε are inviable. Strains with same substitution in Rev3, the catalytic subunit of Polζ, are nearly UV immutable, suggesting severe loss of function. A strain with this substitution in Polα (pol1-Y869A) is viable, but it exhibits slow growth, sensitivity to hydroxyurea, and a spontaneous mutator phenotype for frameshifts and base substitutions. The pol1-Y869A/pol1-Y869A diploid exhibits aberrant growth. Thus, this tyrosine is critical for the function of all four eukaryotic family B DNA polymerases. Strains with a tyrosine substitution in the conserved NS/VxYG motif in region III in Polα, -δ, or -ε are viable and a strain with the homologous substitution in Rev3 is UV mutable. The Polα mutant has no obvious phenotype. The Polε (pol2-Y831A) mutant is slightly sensitive to hydroxyurea and is a semidominant mutator for spontaneous base substitutions and frameshifts. The Polδ mutant (pol3-Y708A) grows slowly, is sensitive to hydroxyurea and methyl methanesulfonate, and is a strong base substitution and frameshift mutator. The pol3-Y708A/pol3-Y708A diploid grows slowly and aberrantly. Mutation rates in the Polα, -δ, and -ε mutant strains are increased in a locus-specific manner by inactivation of PMS1-dependent DNA mismatch repair, suggesting that the mutator effects are due to reduced fidelity of chromosomal DNA replication. This could result directly from relaxed base selectivity of the mutant polymerases due to the amino acid changes in the polymerase active site. In addition, the alanine substitutions may impair catalytic function to allow a different polymerase to compete at the replication fork. This is supported by the observation that the pol3-Y708A mutation is recessive and its mutator effect is partially suppressed by disruption of the REV3 gene.


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Rachid Skouta

Maintaining the physiological level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body is highly important in the fight against radical species in the context of human health [...]


Sign in / Sign up

Export Citation Format

Share Document