C(2)-H isotopic exchange in coordinated imidazoles revisited. The case of the [Co(NH3)5ImH]3+ ion

1999 ◽  
Vol 77 (2) ◽  
pp. 178-181 ◽  
Author(s):  
Charles R Clark ◽  
Allan G Blackman ◽  
M Ross Grimmett ◽  
Akbar Mobinikhaledi

The temperature dependence of the acid ionization constants of [Co(NH3)5ImH]3+ in H2O (I = 1.0 M (NaClO4)): pKa (°C) = 10.10 ± 0.04 (25.0), 9.92 ± 0.03 (30.0), 9.82 ± 0.02 (35.0), 9.62 ± 0.03 (40.0), and [Co(ND3)5ImD]3+ in D2O (I = 0.35 M (NaClO4)): pKa (°C) = 10.58 ± 0.06 (25.0), 9.46 ± 0.08 (60.0) is reported. Observed first-order rate constants for H/D exchange at C-2 in [Co(ND3)5ImD]3+ over the pD range 8.08-11.20 (60.0°C, I = 0.35 M (NaClO4)) follow an equation of the form: kobs = kODKw/(aD+ + Ka)γ±, with kOD (0.27 ± 0.06 M-1 s-1) corresponding to the rate constant for OD--catalyzed abstraction of H-2 in [Co(ND3)5ImD]3+, and Ka ((2.8 ± 0.7) × 10-10 M, pKa = 9.55 ± 0.13) to the acid ionization constant of this species. No evidence was found for a pathway to H/D exchange in the imidazolate moiety of [Co(ND3)5Im]2+.Key words: kinetics, H/D-exchange, imidazole, metal complex.

1995 ◽  
Vol 73 (12) ◽  
pp. 2137-2142 ◽  
Author(s):  
A.J. Elliot ◽  
M.P. Chenier ◽  
D.C. Ouellette

In this publication we report: (i) the rate constants for reaction of the hydrated electron with 1-hexyn-3-ol ((8.6 ± 0.3) × 108 dm3 mol−1 s−1 at 18 °C), cinnamonitrile ((2.3 ± 0.2) × 1010 dm3 mol−1 s−1 at 20 °C), and 1,3-diethyl-2-thiourea ((3.5 ± 0.3) × 108 dm3 mol−1 s−1 at 22 °C). For cinnamonitrile and diethylthiourea, the temperature dependence up to 200 °C and 150 °C, respectively, is also reported; (ii) the rate constants for the reaction of the hydroxyl radical with 1-hexyn-3-ol ((5.5 ± 0.5) × 109 dm3 mol−1 s−1 at 20 °C), cinnamonitrile ((9.2 ± 0.3) × 109 dm3 mol−1 s−1 at 21 °C), and diethylthiourea ((8.0 ± 0.8) × 108 dm3 mol−1 s−1 at 22 °C). For cinnamonitrile, the temperature dependence up to 200 °C is also reported; (iii) the rate constant for the hydrogen atom reacting with 1-hexyn-3-ol ((4.3 ± 0.4) × 109 dm3 mol−1 s−1 at 20 °C). Keywords: radiolysis, corrosion inhibitors, rate constants.


1981 ◽  
Vol 27 (5) ◽  
pp. 753-755 ◽  
Author(s):  
P A Adams ◽  
M C Berman

Abstract We describe a simple, highly reproducible kinetic technique for precisely measuring temperature in spectrophotometric systems having reaction cells that are inaccessible to conventional temperature probes. The method is based on the temperature dependence of pseudo-first-order rate constants for the acid-catalyzed hydrolysis of N-o-tolyl-D-glucosylamine. Temperatures of reaction cuvette contents are measured with a precision of +/- 0.05 degrees C (1 SD).


1991 ◽  
Vol 69 (2) ◽  
pp. 363-367
Author(s):  
Guoying Xu ◽  
Jan A. Herman

Ion/molecule reactions in mixtures of ethyl chloride with C1–C4 alkylamines were studied by ICR mass spectrometry. Ethyl cation transfer to C1–C4 alkylamines proceeds mainly through diethylchloronium ions with rate constants ~3 × 10−10cm3 s−1. In the case of s-butylamine the corresponding rate constant is 0.5 × 10−10 cm3 s−1. Key words: ICR mass spectrometry, ion/molecule reactions, ethylchloride, methylamine, ethylamine, propylamines, butylamines


1971 ◽  
Vol 26 (10) ◽  
pp. 1010-1016 ◽  
Author(s):  
Renate Voigt ◽  
Helmut Wenck ◽  
Friedhelm Schneider

First order rate constants of the reaction of a series of SH-, imidazole- and imidazole/SH-compounds with FDNB as well as their pH- and temperature dependence were determined. Some of the tested imidazole/SH-compounds exhibit a higher nucleophilic reactivity as is expected on the basis of their pKSH-values. This enhanced reactivity is caused by an activation of the SH-groups by a neighbouring imidazole residue. The pH-independent rate constants were calculated using the Lindley equation.The kinetics of DNP-transfer from DNP-imidazole to SH-compounds were investigated. The pH-dependence of the reaction displays a maximum curve. Donor in this reaction is the DNP-imidazolecation and acceptor the thiolate anion.The reaction rate of FDNB with imidazole derivatives is two to three orders of magnitude slower than with SH-compounds.No inter- or intra-molecular transfer of the DNP-residue from sulfure to imidazole takes place.


1993 ◽  
Vol 71 (6) ◽  
pp. 907-911 ◽  
Author(s):  
Michel Zoghbi ◽  
John Warkentin

Twelve Δ3-1,3,4-oxadiazolines in which C-2 is also C-4 of a β-lactam moiety (spiro-fused β-lactam oxadiazoline system) were thermolyzed as solutions in benzene. Substituents in the β-lactam portion affect the rate constant for thermal decomposition of the oxadiazolines to N2, acetone, and a β-lactam-4-ylidene. The total spread of first-order rate constants at 100 °C was 47-fold and the average value was 6.7 × 10−4 s−1. A phenyl substituent at N-1 or at C-3 was found to be rate enhancing, relative to methyl. At C-3, H and Cl were also rate enhancing, relative to methyl. The data are interpreted in terms of the differential effects of substituents on the stabilities of the ground states, and on the stabilities of corresponding transition states for concerted, suprafacial, [4π + 2π] cycloreversion. The first products, presumably formed irreversibly, are N2 and a carbonyl ylide. The latter subsequently fragments to form acetone (quantitative) and a β-lactam-4-ylidene.


2012 ◽  
Vol 65 (11) ◽  
pp. 1970-1974 ◽  
Author(s):  
C. Y. Kuo ◽  
C. Y. Pai ◽  
C. H. Wu ◽  
M. Y. Jian

This study applies photo-Fenton and photo-Fenton-like systems to decolorize C.I. Reactive Red 2 (RR2). The oxidants were H2O2 and Na2S2O8; Fe2+, Fe3+, and Co2+ were used to activate these two oxidants. The effects of oxidant concentration (0.3–2 mmol/L) and temperature (25–55 °C) on decolorization efficiency of the photo-Fenton and photo-Fenton-like systems were determined. The decolorization rate constants (k) of RR2 in the tested systems are consistent with pseudo-first-order kinetics. The rate constant increased as oxidant concentration and temperature increased. Activation energies of RR2 decolorization in the UV/H2O2/Fe2+, UV/H2O2/Fe3+, UV/Na2S2O8/Fe2+ and UV/Na2S2O8/Fe3+ systems were 32.20, 39.54, 35.54, and 51.75 kJ/mol, respectively.


1974 ◽  
Vol 52 (10) ◽  
pp. 1937-1941 ◽  
Author(s):  
P. Christian Vogel

The derivation of the observed first-order rate constants from the "exact" integrated rate equations for the kinetic scheme of reaction 1 is presented. It is shown that the solvolytic exponential first-order rate constant is a special case of the polarimetric rate constant and that the optical activity of the product is determined by a multiplicative ratio of rate constants for the optically important reactions of the ion pair intermediate. A form of the integrated first-order polarimetric rate equation with a linearly independent parameter set is presented. The functions for the first-order rate constants derived using the steady state approximation are special cases of the functions derived from the exact equations, as are the functions for the first-order rate constants for two systems which involve pre-equilibria followed by a slow product forming step. These functions cannot all be derived one from the other. A differential analysis of observed isotope effects as functions of isotope effects on the rate constants for reactions involving the intermediates is presented.


1955 ◽  
Vol 33 (2) ◽  
pp. 426-440 ◽  
Author(s):  
M. W. Lister

Various reactions of cyanic acid and the cyanate ion have been examined. Cyanic acid, in the presence of added hydrochloric or nitric acid, decomposes quantitatively according to the equation: HNCO + H3O+ → CO2 + NH4+. The rate constant for this reaction was measured over a range of temperature and ionic strength, and was found to be 0.86 mole liter−1 min.−1 at unit ionic strength and 1.5 °C. The activation energy is [Formula: see text] The effect of ionic strength on the reaction with hydrochloric acid closely parallels that on the activity coefficients of the acid itself. Without added acid cyanic acid decomposes by a first order reaction: HNCO + 2H2O → NH4HCO3, followed by a rapid second stage: NH4HCO3 + HNCO → NH4NCO + H2CO3. This reaction has a rate constant of 0.011 min.−1 at 0 °C. and an activation energy of 16 kcal. There is also a few per cent of some side reaction. Cyanate ions in alkaline solution decompose thus: OCN− + 2H2O → NH4+ + CO3−−. This reaction was examined over a range of temperature and ionic strength: it is first order with k = 3.0 × 10−3 min.−1at 100 °C. (0.3 ionic strength) and [Formula: see text] activation energy. The rate is somewhat dependent on hydroxide concentration, when this is fairly low. The reaction is catalyzed by carbonate, but not by a number of other anions that were examined. The rate of the catalyzed reaction is proportional to the carbonate concentration, but independent of cyanate, at least over a considerable range. The ionization constant of cyanic acid has been measured by a method that avoids errors from hydrolysis; the value obtained was 2.0 × 10−4. The oxidation of cyanate by hypochlorite and by chlorine was examined more briefly.


2003 ◽  
Vol 48 (5) ◽  
pp. 1-8 ◽  
Author(s):  
R.H. Kadlec

Wetlands are in use as adjuncts to wastewater treatment lagoons at many north temperate locations. Performance data for 21 systems show median removals of 67, 61, 61, 48 and 99.8% for TSS, BOD, NH4-N, TP and fecal coliforms, respectively. Hydraulic loading rates range from 0.14 to 55 cm/d, areas from 0.02 to 200 ha, and latitudes from 30 to 54°N. Calibrations of first order models with temperature dependence show that rate constants vary from seasonal dependence at low loadings to temperature dependence at high loadings for ammonia. Phosphorus rate constants display seasonal, not temperature effects. BOD and TSS are not affected by season. Wetland rate constants are larger than those for lagoons for all constituents. The optimal winter operating strategy, if hydraulics allow, is partial storage during frozen months, coupled with winter use of the wetlands. The use of FWS wetlands for polishing lagoon effluents is cost effective when land availability is not drastically constrained. Many systems have been in operation long enough to demonstrate sustainable long-term performance. Infiltration beds are potentially a valuable addition to ponds and wetlands.


1985 ◽  
Vol 63 (10) ◽  
pp. 2673-2678 ◽  
Author(s):  
Robert A. McClelland ◽  
Claude Moreau

Hydrolysis kinetics are reported for four spiro ortho esters: 3,4-dihydro-6-methoxy-1H-2-benzopyran-1-spiro-2′-1′,3′-dioxolane (13), its 1′,3′-dioxane analog (14), and the 6-unsubstituted versions of each (11 and 12). For comparison, also included are the diethoxy analogs: 1,1-diethoxy-3,4-dihydro-6-methoxy-1H-2-benzopyran (10) and the 6-unsubstituted compound (9). Product analysis implicates an initial opening of the dioxolane or dioxane ring in the spiro ortho esters, as expected on the basis of stereoelectronic considerations. The intermediate dialkoxycarbocations can be observed in HCl solutions. A detailed analysis has been carried out for the 6-methoxy systems to provide the rate constants k1, the second-order rate constant for H+-catalyzed formation of the cation from the ortho ester, k2, the first-order rate constant for water addition to the cation, and k−1, the first-order rate constant for ring closing of the cation to reform the ortho ester. The two spiro ortho esters are shown in this analysis to undergo reversible ring opening in their hydrolysis, in that values of k−1, are greater than k2. The differences, however, are not large, k−1/k2 being 1.2 (dioxolane, 13) and 3.8 (dioxane, 14). Comparison with the diethoxy ortho ester also reveals that the ring opening process (k1, rate constants) is inherently more difficult with the dioxolane, although not with the dioxane. An argument involving lone pair orientation is advanced to explain this.


Sign in / Sign up

Export Citation Format

Share Document