scholarly journals Numbers of fecal streptococci and Escherichia coli in fresh and dry cattle, horse, and sheep manure

2005 ◽  
Vol 51 (10) ◽  
pp. 847-851 ◽  
Author(s):  
R W Weaver ◽  
J A Entry ◽  
Alexandria Graves

Livestock are known contributors to stream pollution. Numbers of fecal streptococci and Escherichia coli in manure naturally deposited by livestock in the field are needed for activities related to bacterial source tracking and determining maximum daily bacterial loading of streams. We measured populations of fecal streptococci and E. coli in fresh and dry manure from cattle (Bos taurus L.), horses (Equus caballus L.), and sheep (Ovis aires L.) on farms in southern Idaho. Populations of indicator bacteria in dry manure were often as high as that in fresh manure from horse and sheep. There was a 2 log10 drop in the population of fecal coliform numbers in dry cattle manure from cattle in pastures but not from cattle in pens. Bacterial isolates used in source tracking should include isolates from both fresh and dry manure to better represent the bacterial source loading of streams.Key words: enterococci, E. coli, fecal streptococci, bacterial indicators, bacterial source tracking, pollution.

2002 ◽  
Vol 68 (4) ◽  
pp. 1631-1638 ◽  
Author(s):  
A. Leclercq ◽  
C. Wanegue ◽  
P. Baylac

ABSTRACT A 24-h direct plating method for fecal coliform enumeration with a resuscitation step (preincubation for 2 h at 37 ± 1°C and transfer to 44 ± 1°C for 22 h) using fecal coliform agar (FCA) was compared with the 24-h standardized violet red bile lactose agar (VRBL) method. FCA and VRBL have equivalent specificities and sensitivities, except for lactose-positive non-fecal coliforms such as Hafnia alvei, which could form typical colonies on FCA and VRBL. Recovery of cold-stressed Escherichia coli in mashed potatoes on FCA was about 1 log unit lower than that with VRBL. When the FCA method was compared with standard VRBL for enumeration of fecal coliforms, based on counting carried out on 170 different food samples, results were not significantly different (P > 0.05). Based on 203 typical identified colonies selected as found on VRBL and FCA, the latter medium appears to allow the enumeration of more true fecal coliforms and has higher performance in certain ways (specificity, sensitivity, and negative and positive predictive values) than VRBL. Most colonies clearly identified on both media were E. coli and H. alvei, a non-fecal coliform. Therefore, the replacement of fecal coliform enumeration by E. coli enumeration to estimate food sanitary quality should be recommended.


1977 ◽  
Vol 40 (11) ◽  
pp. 790-794 ◽  
Author(s):  
JAMES F. FOSTER ◽  
JAMES L. FOWLER ◽  
WARREN C. LADIGES

The microbiological quality of 150 units of raw ground beef obtained from a local retail store was determined. The range of aerobic plate counts was from 6.9 × 104 to 8.3 × 107/g. By using the most probable number method 96.7% of the 150 units were positive for coliforms, 94.7% for Escherichia coli and 61.3% for Staphylococcus aureus. By the plate methods, 99.3% of the units were positive for fecal streptococci and 56% were positive for Clostridium perfringens. No salmonellae were isolated. Aerobic and anaerobic organisms were isolated and identified. E. coli was the most frequently isolated aerobe followed by organisms in the Klebsiella-Enterobacter group. Among the anaerobic isolates, C. perfringens was the organism most frequently encountered.


2005 ◽  
Vol 71 (10) ◽  
pp. 5992-5998 ◽  
Author(s):  
Zexun Lu ◽  
David Lapen ◽  
Andrew Scott ◽  
Angela Dang ◽  
Edward Topp

ABSTRACT Repetitive extragenic palindromic PCR fingerprinting of Escherichia coli is one microbial source tracking approach for identifying the host source origin of fecal pollution in aquatic systems. The construction of robust known-source libraries is expensive and requires an informed sampling strategy. In many types of farming systems, waste is stored for several months before being released into the environment. In this study we analyzed, by means of repetitive extragenic palindromic PCR using the enterobacterial repetitive intergenic consensus primers and comparative analysis using the Bionumerics software, collections of E. coli obtained from a dairy farm and from a swine farm, both of which stored their waste as a slurry in holding tanks. In all fecal samples, obtained from either barns or holding tanks, the diversity of the E. coli populations was underrepresented by collections of 500 isolates. In both the dairy and the swine farms, the diversity of the E. coli community was greater in the manure holding tank than in the barn, when they were sampled on the same date. In both farms, a comparison of stored manure samples collected several months apart suggested that the community composition changed substantially in terms of the detected number, absolute identity, and relative abundance of genotypes. Comparison of E. coli populations obtained from 10 different locations in either holding tank suggested that spatial variability in the E. coli community should be accounted for when sampling. Overall, the diversity in E. coli populations in manure slurry storage facilities is significant and likely is problematic with respect to library construction for microbial source tracking applications.


2005 ◽  
Vol 3 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Clarivel Lasalde ◽  
Roberto Rodriguez ◽  
Gary A. Toranzos ◽  
Henry H. Smith

Previous studies have shown that Escherichia coli can be isolated from non-polluted rivers and from bromeliad axilae in pristine areas of tropical rain forests. Finding E. coli in pristine environments is unusual because this bacterium is thought to only survive in the gut of warm-blooded animals and thus its presence should indicate recent fecal contamination. The aims of this study were 1) to determine if E. coli is part of the native soil microbiota in tropical rain forests and 2) to determine if genetic heterogeneity exists among E. coli populations. High concentrations of total coliforms (104–105 cells per 10 g of soil dry weight) and low concentrations of thermotolerant coliforms (101–102 cells per 10 g dry soil, the majority of these were found to be E. coli) were detected. PCR using uidA-specific primers was done on DNA purified from E. coli isolates and the resulting amplicons analysed by denaturing-gradient gel electrophoresis (DGGE). Out of several hundred isolates, mixtures of nine different amplicons were consistently observed. The different patterns of DGGE observed indicate that the E. coli populations in these pristine soils are genetically heterogeneous. Fecal and environmental E. coli isolates were also analysed by pulsed-field gel electrophoresis (PFGE) which showed high DNA sequence variation among the E. coli isolates. Because of these differences in the genomes, PFGE did not allow grouping of environmental versus human isolates of E. coli when compared side to side. The apparent genetic polymorphisms, as a result of genetic heterogeneity, observed in isolates from the same pristine site indicate that source tracking may be difficult to carry out using E. coli as the target organism.


2005 ◽  
Vol 51 (6) ◽  
pp. 501-505 ◽  
Author(s):  
Thomas A Edge ◽  
Stephen Hill

Antibiotic resistance was examined in 462 Escherichia coli isolates from surface waters and fecal pollution sources around Hamilton, Ontario. Escherichia coli were resistant to the highest concentrations of each of the 14 antibiotics studied, although the prevalence of high resistance was mostly low. Two of 12 E. coli isolates from sewage in a CSO tank had multiple resistance to ampicillin, ciprofloxacin, gentamicin, and tetracycline above their clinical breakpoints. Antibiotic resistance was less prevalent in E. coli from bird feces than from municipal wastewater sources. A discriminant function calculated from antibiotic resistance data provided an average rate of correct classification of 68% for discriminating E. coli from bird and wastewater fecal pollution sources. The preliminary microbial source tracking results suggest that, at times, bird feces might be a more prominent contributor of E. coli to Bayfront Park beach waters than municipal wastewater sources.Key words: antibiotic resistance, Escherichia coli, surface water, fecal pollution.


Author(s):  
Farhan Mohammad Khan ◽  
Rajiv Gupta

Escherichia coli or E. coli is a member of the fecal coliform group and is a more specific indicator of fecal contamination than other fecal coliform species, its presence indicate possibly presence of harmful bacteria which will cause diseases and it also suggests the extent as well as the nature of the contaminants. E. coli bacteria able to survive in water for 4 – 12 weeks and at present, it appears as an indicator to provide the accurate bacterial contamination of fecal matter in drinking water, because of the availability of simple, affordable, fast, sensitive and exact detection techniques. According to the laboratory experiment based techniques, 24 - 48 hours are required for the bacterial concentration to be reported. So, there is a necessity for continuous monitoring. Techniques for detection of many pathogenic bacterial strains are not yet available, sometimes days to weeks are required to get the results. To overcome the difficulties, expensive and time-consuming techniques are required to detect, count and identify the presence of specific bacterial strain. Public health relies on online monitoring of water quality that depends majorly on examination of fecal indicator bacteria, thus protection of health requires fecal pollution indicator so that it is not required to analyze drinking water to overcome the problems associated with waterborne diseases. This paper will brief the classification, sources, survival of E. coli bacteria and its correlation with basic water quality parameters in water sources.```


Author(s):  
C. G. Ikimi ◽  
F. I. Omeje ◽  
C. K. Anumudu

Meat and meat products are a very important category of food consumed widely to meet the nutritional requirements of humans. Due to the high nutrient and moisture content of meat, they readily support the growth of diverse microorganisms. The consumption of these products, when contaminated by pathogenic microorganisms can pose a risk to health leading to possible food poisoning, with Escherichia coli being the most implicated organism. Thus, this research focused on the isolation of Escherichia coli from raw beef (Bos taurus) retailed in Otuoke market, its biochemical identification, pathogenicity testing and antibiogram. A total of 90 raw beef samples were collected from three retail points (30 samples per point) over 3 months and cultured on Eosin-Methylene Blue (EMB) agar for the elucidation of E. coli. Conventional biochemical tests were performed on isolates to identify E. coli. The isolates were subjected to Congo-red assay to test for pathogenicity and the agar-diffusion assay to test sensitivity to commonly utilized antibiotics. A total of 51 samples (56%) were contaminated with E. coli of which 24 samples (26.6%) had mean aerobic bacteria counts greater than 5.0 Log CFU/gm which is above the European Commission Regulation No. 2073/2005 guideline for fresh beef. All E. coli isolates tested positive to the Congo-red assay, thus indicating their potential pathogenicity. Antimicrobial sensitivity assay indicates the resistance of isolates to Tetracycline (60%), Erythromycin (80%) and Amoxicillin (85%). However, the isolates were sensitive to Nitrofurantoin (90%), Gentamicin (78%) and Ciprofloxacin (82%). The results obtained highlights the high level of contamination by potentially pathogenic E. coli in retailed fresh meats which are highly resistant to some of the commonly used antibiotics. The results obtained from this study is of public health significance as it indicates possible risks of infection to people through the consumption of inadequately cooked meat or the cross-contamination of other food items by the meat products which may lead to outbreaks of food poisoning. 


2021 ◽  
Vol 288 (1948) ◽  
Author(s):  
Katherine M. Lagerstrom ◽  
Elizabeth A. Hadly

A striking paucity of information exists on Escherichia coli in wild animals despite evidence that they harbour pathogenic and antimicrobial-resistant E. coli in their gut microbiomes and may even serve as melting pots for novel genetic combinations potentially harmful to human health. Wild animals have been implicated as the source of pathogenic E. coli outbreaks in agricultural production, but a lack of knowledge surrounding the genetics of E. coli in wild animals complicates source tracking and thus contamination curtailment efforts. As human populations continue to expand and invade wild areas, the potential for harmful microorganisms to transfer between humans and wildlife increases. Here, we conducted a literature review of the small body of work on E. coli in wild animals. We highlight the geographic and host taxonomic coverage to date, and in each, identify significant gaps. We summarize the current understanding of E. coli in wild animals, including its genetic diversity, host and geographic distribution, and transmission pathways within and between wild animal and human populations. The knowledge gaps we identify call for greater research efforts to understand the existence of E. coli in wild animals, especially in light of the potentially strong implications for global public health.


Sign in / Sign up

Export Citation Format

Share Document