Timing of growth reductions in black spruce stem and branches during the 1970s spruce budworm outbreak1This article is one of a selection of papers from the 7th International Conference on Disturbance Dynamics in Boreal Forests.

2012 ◽  
Vol 42 (7) ◽  
pp. 1220-1227 ◽  
Author(s):  
Cornelia Krause ◽  
Boris Luszczynski ◽  
Hubert Morin ◽  
Sergio Rossi ◽  
Pierre-Y. Plourde

Spruce budworm ( Choristoneura fumiferana (Clemens)) defoliation is known to regularly produce radial growth decrease in black spruce ( Picea mariana (Mill.) Britton, Sterns & Poggenb.) in the boreal forest of Quebec. Some studies have already shown that the first year of defoliation does not induce growth losses in the stem but could occur in other tree parts. We therefore examined the timing and duration of the growth reduction caused by the last outbreak in black spruce by also considering the branches. More than 79% of branches and 65% of stems exhibited a >40% growth decrease.The reduction was first registered in the upper part of the stem before being detected lower in the stem in 87% of the trees. Probabilities of growth reduction in the upper part of the stem were highest in 1976 and 1977. In the lower stem, the probabilities were highest in 1978. An interesting finding was that in 69% of the studied stands, the probability of growth reduction started earlier (1–2 years) in the branches than in the stem at 1.3 m. Branch analysis should be considered whenever questions arise in regard to the evolution of spruce budworm defoliation as well as the timing of observed growth reduction in black spruce.

2012 ◽  
Vol 42 (7) ◽  
pp. 1410-1419 ◽  
Author(s):  
Melissa E. Lacey ◽  
Jeffery P. Dech

The objective of this study was to determine if the stand‐level soil moisture regime had a significant effect on the reduction in black spruce (Picea mariana (Mill.) B.S.P.) radial growth during the most recent spruce budworm (Choristoneura fumiferana Clem.) outbreak in the boreal forest region of northeastern Ontario. We collected a stratified random sample of co-dominant black spruce trees from three moisture regimes and compared the reduction of radial growth during a spruce budworm outbreak between dry, moist, and wet stands. We focused on the most recent outbreak from 1975–1987, which we dated by dendrochronological analysis of black spruce increment cores from the Romeo Malette Forest near Timmins, Ontario. Samples collected from dry and moist sites showed significantly greater maximum radial growth reduction than those from wet sites. Mean growth reduction over the entire outbreak was not significantly different among moisture regimes but followed the same trend. We found no evidence of spatial autocorrelation in the growth reduction response, suggesting that the moisture effect was not confounded by location.


2016 ◽  
Vol 46 (8) ◽  
pp. 1059-1066 ◽  
Author(s):  
Roberto L. Salomón ◽  
Emilie Tarroux ◽  
Annie DesRochers

Spruce budworm (Choristoneura fumiferana Clem.) outbreaks cause extensive mortality and growth reductions throughout boreal forests in eastern North America. As tree vulnerability to defoliation remains partially unexplained by tree and stand attributes, we hypothesized that root grafting might attenuate the negative impact of severe defoliation in tree growth. Two experimental sites in the Abitibi-Témiscamingue region dominated by black spruce (Picea mariana Mill.) were harvested and hydraulically excavated to study tree growth in 36 trees in relation to root grafting and the last spruce budworm outbreak using dendroecological methods. Root grafts reduced the negative effects of defoliation by maintaining stable growth in connected trees during epidemic periods. Among dominant trees, growth releases immediately after the outbreak were uniquely observed in grafted trees. Among suppressed trees, grafted trees tended to grow more than non-grafted trees when defoliation severity was the highest. Carbohydrate transfers through root grafts and enhanced efficiency to acquire resources may explain the better performance of grafted trees under scenarios of limited carbon supply. This study reinforces the growing body of literature that suggests root grafting as a cooperative strategy to withstand severe disturbances and highlights the key role of root grafting in stand dynamics to cope with periodic outbreaks.


1958 ◽  
Vol 34 (1) ◽  
pp. 39-47 ◽  
Author(s):  
J. R. Blais

The relationship between spruce budworm defoliation and radial growth at breast height for balsam fir and white spruce trees of merchantable size was studied in various stands in northwestern Ontario. Defoliation was recorded yearly for these stands from the beginning of the infestation, and radial growth measurements were obtained from increment cores. The first year of radial growth suppression was calculated by comparing the growth of the affected species with that of jack pine and red pine trees by means of a growth-ratio technique. Apparent suppression in balsam fir and white spruce varied between stands, and, generally, occurred at the earliest in the second year and at the latest in the fourth year of severe defoliation. A wide ring at the base of the tree coinciding with the first year of suppression as reported by Craighead was non-existent.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 850 ◽  
Author(s):  
Janie Lavoie ◽  
Miguel Montoro Girona ◽  
Hubert Morin

Spruce budworm (Choristoneura fumiferana) is the main defoliator of conifer trees in North American boreal forests, affecting extensive areas and causing marked losses of timber supplies. In 2017, spruce budworm affected more than 7 million ha of Eastern Canadian forest. Defoliation was particularly severe for black spruce (Picea mariana (Mill.) B.S.P.), one of the most important commercial trees in Canada. During the last decades, intensive forest exploitation practices have created vast stands of young balsam fir (Abies balsamea (L.) Mill.) and black spruce. Most research focused on the impacts of spruce budworm has been on mature stands; its effects on regeneration, however, have been neglected. This study evaluates the impacts of spruce budworm on the defoliation of conifer seedlings (black spruce and balsam fir) in clearcuts. We measured the cumulative and annual defoliation of seedlings within six clearcut black spruce stands in Quebec (Canada) that had experienced severe levels of defoliation due to spruce budworm. For all sampled seedlings, we recorded tree species, height class, and distance to the residual forest. Seedling height and species strongly influenced defoliation level. Small seedlings were less affected by spruce budworm activity. As well, cumulative defoliation for balsam fir was double that of black spruce (21% and 9%, respectively). Distance to residual stands had no significant effect on seedling defoliation. As insect outbreaks in boreal forests are expected to become more severe and frequent in the near future, our results are important for adapting forest management strategies to insect outbreaks in a context of climate change.


1957 ◽  
Vol 33 (4) ◽  
pp. 364-372 ◽  
Author(s):  
J. R. Blais

Spruce budworm larvae feeding on black spruce had a lower rate of development and a higher rate of mortality than those feeding on white spruce or balsam fir. This was attributable to the lateness in opening of the black spruce buds rather than to the inferior nutritional quality of the foliage. When staminate flowers were present in abundance on black spruce trees, development and survival of the insect was fairly similar to that on the other two species of trees; the flowers provided adequate food at the time of the third and fourth instars thus permitting the larvae to survive until the opening of the shoot buds. The late opening of the black spruce buds explains the relative immunity of this species to severe spruce budworm damage.


1999 ◽  
Vol 29 (10) ◽  
pp. 1583-1591 ◽  
Author(s):  
Cornelia Krause ◽  
Hubert Morin

Radial growth along the stems and root systems of black spruce trees (Picea mariana (Mill.) BSP) was examined to determine the effects of spruce budworm defoliation. A mixed conifer and pure black spruce stand located in the boreal zone of Quebec, Canada were sampled. Following defoliation, dendrochronological analyses revealed the percent growth reduction in the ring width at different stem heights and throughout the root system. Ring widths of black spruce were found to be reduced during the last three spruce budworm outbreaks. The reduction of the tree-ring width after spruce budworm outbreaks started first in the crown region and was followed by reduction at the stem base. For the whole root system, the ring-width index exhibited a decrease. The root system showed a high sensitivity to defoliation by spruce budworm. Inside the root system, the growth reduction after a spruce budworm outbreak was variable in each root branch. The growth decrease of the pure black spruce stand was less intensive than in the mixed stand.


2004 ◽  
Vol 34 (11) ◽  
pp. 2351-2362 ◽  
Author(s):  
Wayne E MacKinnon ◽  
David A MacLean

The species composition of surrounding forest and site characteristics have been postulated to influence growth loss caused by eastern spruce budworm (Choristoneura fumiferana Clem.) defoliation. Forty spruce (Picea spp.) and balsam fir (Abies balsamea (L.) Mill.) stands located in north-central New Brunswick, Canada, were measured for defoliation and tree growth and used to determine the effects of surrounding forest (softwood, mixedwood), site (wet soil – nutrient poor; moist soil – nutrient rich), and species group (balsam fir, spruce) on growth reduction caused by spruce budworm. Stem analysis of six trees per stand (total 240 trees) determined mean specific volume increment (SVI) per year in 1973–1993. There was relatively little defoliation during the 1989–1993 measurement period, and regression analyses showed that SVI was significantly (p = 0.0299) related to mean defoliation for only one of eight treatment classes: balsam fir on moist–rich sites in mixedwood forests. However, two periods of earlier growth reduction were evident, and analysis of variance showed that balsam fir on wet–poor sites sustained 12% greater (p = 0.0071) reduction in SVI from 1987 to 1990 than balsam fir on moist–rich sites. White spruce (Picea glauca (Moench) Voss) sustained 13% greater (p = 0.0198) reduction in SVI from 1973 to 1978 than red spruce (Picea rubens Sarg.) – black spruce (Picea mariana (Mill.) BSP). Surrounding forest type did not significantly affect SVI reduction from 1973 to 1978 or from 1987 to 1990, but from 1973 to 1978 stands in softwood forest sustained 5%–8% more growth reduction than those in mixedwood forest.


1961 ◽  
Vol 93 (9) ◽  
pp. 764-771 ◽  
Author(s):  
R. F. Shepherd

The spruce budworm, Choristoneura fumiferana (Clem.), is indigenous to most of the boreal forests in Canada and adjacent Eastern and Western United States. Throughout most of this range the budworm maintains a one-year cycle, overwintering as second instar larvae. In some mountainous areas of Alberta and British Columbia, a form of the budworm has a two-year cycle and over-winters as second instar larvae in the first year and as fourth instar larvae in the second year. The habitat temperatures of these two forms were investigated and related to rates of development in an attempt to discover the environmental factor which maintains the two-year cycle budworm as a distinct form even though it is geographically surrounded by the one-year cycle budworm.


2012 ◽  
Vol 42 (7) ◽  
pp. 1264-1276 ◽  
Author(s):  
Yan Boulanger ◽  
Dominique Arseneault ◽  
Hubert Morin ◽  
Yves Jardon ◽  
Philip Bertrand ◽  
...  

It is argued that spruce budworm ( Choristoneura fumiferana (Clemens)) (SBW) outbreaks have tended to be more frequent, severe, and spatially synchronized since the beginning of the 20th century. However, few studies have assessed the long-term (>200 years) variations in SBW outbreak dynamics. We reconstructed the SBW outbreak history at the northern limit of the temperate forest in southern Quebec using dendrochronological material from old buildings and five old-growth stands. Our regional tree-ring chronology (1551–1995) represents one of the longest and most replicated insect outbreak reconstructions in North America. Nine potential outbreaks were identified (1976–1991, 1946–1959, 1915–1929, 1872–1903, 1807–1817, 1754–1765, 1706–1717, 1664–1670, and 1630–1638) with three additional uncertain outbreaks (1647–1661, 1606–1619, and 1564–1578). Results suggested that southern Quebec has experienced frequent and synchronized outbreaks throughout the last 400 years. Although outbreak frequency was higher during the 20th century (approximately 30 years) as compared with the 1660–1850 period (approximately 50 years), similar or even higher outbreak frequency might have occurred prior to 1660 (approximately 28 years). We did not find any evidence that the recent outbreak dynamics in southern Quebec is outside its historical range of the last 400 years. Previous studies based on living trees may have underestimated outbreak frequency and synchrony prior to 1900.


2009 ◽  
Vol 85 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Cornelia Krause ◽  
Hubert Morin ◽  
Pierre-Y. Plourde

In the boreal forest of Quebec, 80% of harvested black spruce (Picea mariana [Mill.] BSP) stands regenerate naturally. In the remaining 20%, forest regeneration is ensured by planting seedlings and these plantations are expected to increase future forest yields. However, predictions of future yields using the information from very young plantations in this ecosystem may have low accuracy. To compare juvenile growth in plantations versus naturally regenerated stands, and also to evaluate the impacts of spruce budworm Choristoneura fumiferana (Clemens) defoliation periods during the juvenile phase, annual height and volume growth were calculated from measurements on nine black spruce stands. The nine sites consisted of two plantations and seven post-fire, naturally regenerated stands. Of the seven naturally regenerated sites, four were epidemic and 3 endemic. The term “epidemic” refers to stands regenerated during known spruce budworm defoliation periods. The term “endemic” refers to stands regenerated during periods without severe defoliation. For height and volume growth, 5 different methods were used and compared. The annual height and volume growth of all black spruce showed a sigmoid trend, characterized by low values in the first years after germination, followed by an exponential acceleration and finally oscillation around a horizontal asymptote. The black spruce stands established during endemic periods were more productive than those established during epidemic periods, but plantations were the most productive. Key words: black spruce, juvenile growth, plantation, post-fire stands, spruce budworm outbreak, volume, yield


Sign in / Sign up

Export Citation Format

Share Document