scholarly journals Natural root grafting in Picea mariana to cope with spruce budworm outbreaks

2016 ◽  
Vol 46 (8) ◽  
pp. 1059-1066 ◽  
Author(s):  
Roberto L. Salomón ◽  
Emilie Tarroux ◽  
Annie DesRochers

Spruce budworm (Choristoneura fumiferana Clem.) outbreaks cause extensive mortality and growth reductions throughout boreal forests in eastern North America. As tree vulnerability to defoliation remains partially unexplained by tree and stand attributes, we hypothesized that root grafting might attenuate the negative impact of severe defoliation in tree growth. Two experimental sites in the Abitibi-Témiscamingue region dominated by black spruce (Picea mariana Mill.) were harvested and hydraulically excavated to study tree growth in 36 trees in relation to root grafting and the last spruce budworm outbreak using dendroecological methods. Root grafts reduced the negative effects of defoliation by maintaining stable growth in connected trees during epidemic periods. Among dominant trees, growth releases immediately after the outbreak were uniquely observed in grafted trees. Among suppressed trees, grafted trees tended to grow more than non-grafted trees when defoliation severity was the highest. Carbohydrate transfers through root grafts and enhanced efficiency to acquire resources may explain the better performance of grafted trees under scenarios of limited carbon supply. This study reinforces the growing body of literature that suggests root grafting as a cooperative strategy to withstand severe disturbances and highlights the key role of root grafting in stand dynamics to cope with periodic outbreaks.

2012 ◽  
Vol 42 (7) ◽  
pp. 1220-1227 ◽  
Author(s):  
Cornelia Krause ◽  
Boris Luszczynski ◽  
Hubert Morin ◽  
Sergio Rossi ◽  
Pierre-Y. Plourde

Spruce budworm ( Choristoneura fumiferana (Clemens)) defoliation is known to regularly produce radial growth decrease in black spruce ( Picea mariana (Mill.) Britton, Sterns & Poggenb.) in the boreal forest of Quebec. Some studies have already shown that the first year of defoliation does not induce growth losses in the stem but could occur in other tree parts. We therefore examined the timing and duration of the growth reduction caused by the last outbreak in black spruce by also considering the branches. More than 79% of branches and 65% of stems exhibited a >40% growth decrease.The reduction was first registered in the upper part of the stem before being detected lower in the stem in 87% of the trees. Probabilities of growth reduction in the upper part of the stem were highest in 1976 and 1977. In the lower stem, the probabilities were highest in 1978. An interesting finding was that in 69% of the studied stands, the probability of growth reduction started earlier (1–2 years) in the branches than in the stem at 1.3 m. Branch analysis should be considered whenever questions arise in regard to the evolution of spruce budworm defoliation as well as the timing of observed growth reduction in black spruce.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 850 ◽  
Author(s):  
Janie Lavoie ◽  
Miguel Montoro Girona ◽  
Hubert Morin

Spruce budworm (Choristoneura fumiferana) is the main defoliator of conifer trees in North American boreal forests, affecting extensive areas and causing marked losses of timber supplies. In 2017, spruce budworm affected more than 7 million ha of Eastern Canadian forest. Defoliation was particularly severe for black spruce (Picea mariana (Mill.) B.S.P.), one of the most important commercial trees in Canada. During the last decades, intensive forest exploitation practices have created vast stands of young balsam fir (Abies balsamea (L.) Mill.) and black spruce. Most research focused on the impacts of spruce budworm has been on mature stands; its effects on regeneration, however, have been neglected. This study evaluates the impacts of spruce budworm on the defoliation of conifer seedlings (black spruce and balsam fir) in clearcuts. We measured the cumulative and annual defoliation of seedlings within six clearcut black spruce stands in Quebec (Canada) that had experienced severe levels of defoliation due to spruce budworm. For all sampled seedlings, we recorded tree species, height class, and distance to the residual forest. Seedling height and species strongly influenced defoliation level. Small seedlings were less affected by spruce budworm activity. As well, cumulative defoliation for balsam fir was double that of black spruce (21% and 9%, respectively). Distance to residual stands had no significant effect on seedling defoliation. As insect outbreaks in boreal forests are expected to become more severe and frequent in the near future, our results are important for adapting forest management strategies to insect outbreaks in a context of climate change.


1957 ◽  
Vol 33 (4) ◽  
pp. 364-372 ◽  
Author(s):  
J. R. Blais

Spruce budworm larvae feeding on black spruce had a lower rate of development and a higher rate of mortality than those feeding on white spruce or balsam fir. This was attributable to the lateness in opening of the black spruce buds rather than to the inferior nutritional quality of the foliage. When staminate flowers were present in abundance on black spruce trees, development and survival of the insect was fairly similar to that on the other two species of trees; the flowers provided adequate food at the time of the third and fourth instars thus permitting the larvae to survive until the opening of the shoot buds. The late opening of the black spruce buds explains the relative immunity of this species to severe spruce budworm damage.


2021 ◽  
Vol 4 ◽  
Author(s):  
Lorena Balducci ◽  
Philippe Rozenberg ◽  
Annie Deslauriers

In the long term, defoliation strongly decreases tree growth and survival. Insect outbreaks are a typical cause of severe defoliation. Eastern spruce budworm (Choristoneura fumiferana Clem.) outbreaks are one of the most significant disturbances of Picea and Abies boreal forests. Nevertheless, in boreal conifers, a 2-year defoliation has been shown to quickly improve tree water status, protect the foliage and decrease growth loss. It suggests that defoliation effects are time-dependent and could switch from favorable in the short term to unfavorable when defoliation duration exceeds 5–10 years. A better understanding of the effect of defoliation on stem radius variation during the needle flushing time-window could help to elucidate the relationships between water use and tree growth during an outbreak in the medium term. This study aims to assess the effects of eastern spruce budworm (Choristoneura fumiferana Clem.) defoliation and bud phenology on stem radius variation in black spruce [Picea mariana (Mill.) B.S.P.] and balsam fir [Abies balsamea (L.) Mill.] in a natural stand in Quebec, Canada. We monitored host and insect phenology, new shoot defoliation, seasonal stem radius variation and daytime radius phases (contraction and expansion) from 2016 to 2019. We found that defoliation significantly increased stem growth at the beginning of needle flushing. Needles flushing influenced the amplitude and duration of daily stem expansion and contraction, except the amplitude of stem contraction. Over the whole growing season, defoliation increased the duration of stem contraction, which in turn decreased the duration of stem expansion. However, the change (increase/decrease) of the duration of contraction/expansion reflects a reduced ability of the potential recovery from defoliation. Black spruce showed significantly larger 24-h cycles of stem amplitude compared to balsam fir. However, both species showed similar physiological adjustments during mild stress, preventing water loss from stem storage zones to support the remaining needles’ transpiration. Finally, conifers react to defoliation during a 4-year period, modulating stem radius variation phases according to the severity of the defoliation.


2012 ◽  
Vol 42 (7) ◽  
pp. 1410-1419 ◽  
Author(s):  
Melissa E. Lacey ◽  
Jeffery P. Dech

The objective of this study was to determine if the stand‐level soil moisture regime had a significant effect on the reduction in black spruce (Picea mariana (Mill.) B.S.P.) radial growth during the most recent spruce budworm (Choristoneura fumiferana Clem.) outbreak in the boreal forest region of northeastern Ontario. We collected a stratified random sample of co-dominant black spruce trees from three moisture regimes and compared the reduction of radial growth during a spruce budworm outbreak between dry, moist, and wet stands. We focused on the most recent outbreak from 1975–1987, which we dated by dendrochronological analysis of black spruce increment cores from the Romeo Malette Forest near Timmins, Ontario. Samples collected from dry and moist sites showed significantly greater maximum radial growth reduction than those from wet sites. Mean growth reduction over the entire outbreak was not significantly different among moisture regimes but followed the same trend. We found no evidence of spatial autocorrelation in the growth reduction response, suggesting that the moisture effect was not confounded by location.


2009 ◽  
Vol 85 (2) ◽  
pp. 267-276 ◽  
Author(s):  
Cornelia Krause ◽  
Hubert Morin ◽  
Pierre-Y. Plourde

In the boreal forest of Quebec, 80% of harvested black spruce (Picea mariana [Mill.] BSP) stands regenerate naturally. In the remaining 20%, forest regeneration is ensured by planting seedlings and these plantations are expected to increase future forest yields. However, predictions of future yields using the information from very young plantations in this ecosystem may have low accuracy. To compare juvenile growth in plantations versus naturally regenerated stands, and also to evaluate the impacts of spruce budworm Choristoneura fumiferana (Clemens) defoliation periods during the juvenile phase, annual height and volume growth were calculated from measurements on nine black spruce stands. The nine sites consisted of two plantations and seven post-fire, naturally regenerated stands. Of the seven naturally regenerated sites, four were epidemic and 3 endemic. The term “epidemic” refers to stands regenerated during known spruce budworm defoliation periods. The term “endemic” refers to stands regenerated during periods without severe defoliation. For height and volume growth, 5 different methods were used and compared. The annual height and volume growth of all black spruce showed a sigmoid trend, characterized by low values in the first years after germination, followed by an exponential acceleration and finally oscillation around a horizontal asymptote. The black spruce stands established during endemic periods were more productive than those established during epidemic periods, but plantations were the most productive. Key words: black spruce, juvenile growth, plantation, post-fire stands, spruce budworm outbreak, volume, yield


1994 ◽  
Vol 40 (1) ◽  
pp. 24-27 ◽  
Author(s):  
J. A. Johnson ◽  
N. J. Whitney

Hyphae and hyphal extracts from fungi isolated from inside healthy black spruce needles were assayed for their effect on spruce budworm (Choristoneura fumiferana Clem.) cell cultures and larvae. Isolates were from needles of four age-classes (current –3 years old) collected throughout a 4-month sampling period. Hyphal extracts from 21 of the 100 isolates tested were toxic to spruce budworm cell cultures and isolates from older needles (2 and 3 years old) negatively affected cells more frequently (p < 0.05) than isolates from younger needles (current and 1 year old). Hyphae from five isolates and hyphal extracts from seven increased mortality (p < 0.05) when fed to second instar larvae in a laboratory bioassay. Development was delayed and larval dry mass reduced when budworm were fed hyphae from Cryptocline abietina Petrak (isolate number 69). Larval dry mass was reduced when budworm were fed the extract from Aureobasidium pullulons (de Bary) Am. (isolate 87) but increased when fed Cryptocline abietina (isolates 40 and 80), a coelomycete (isolate 12), and Hormonema dematioides (isolates 28, 63, and 96).Key words: endophytic fungi, budworm, Choristoneura fumiferana, Picea mariana, toxicity.


Author(s):  
Marc Rhainds ◽  
Ian DeMerchant ◽  
Pierre Therrien

Abstract Spruce budworm, Choristoneura fumiferana Clem. (Lepidoptera: Tortricidae), is the most severe defoliator of Pinaceae in Nearctic boreal forests. Three tools widely used to guide large-scale management decisions (year-to-year defoliation maps; density of overwintering second instars [L2]; number of males at pheromone traps) were integrated to derive pheromone-based thresholds corresponding to specific intergenerational transitions in larval densities (L2i → L2i+1), taking into account the novel finding that threshold estimates decline with distance to defoliated forest stands (DIST). Estimates of thresholds were highly variable between years, both numerically and in terms of interactive effects of L2i and DIST, which limit their heuristic value. In the context of early intervention strategy (L2i+1 &gt; 6.5 individuals per branch), however, thresholds fluctuated within relatively narrow intervals across wide ranges of L2i and DIST, and values of 40–200 males per trap may thus be used as general guideline.


1988 ◽  
Vol 120 (12) ◽  
pp. 1113-1121 ◽  
Author(s):  
Y.H. Prévost ◽  
J.E. Laing ◽  
V.F. Haavisto

AbstractThe seasonal damage to female reproductive structures (buds, flowers, and cones) of black spruce, Picea mariana (Mill.) B.S.P., was assessed during 1983 and 1984. Nineteen insects (five Orders) and the red squirrel, Tamiasciurus hudsonicus (Erxleben), were found feeding on these reproductive structures. Collectively, these organisms damaged 88.9 and 53.5% of the cones in 1983 and 1984, respectively. In the 2 years, Lepidoptera damaged 61.8% of the cones in 1983 and 44.4% of the cones in 1984. The spruce budworm, Choristoneura fumiferana (Clem.), and the spruce coneworm, Dioryctria reniculelloides Mut. and Mun., were the most important pests. Cones damaged by Lepidoptera could be classed into three categories: (a) severe, yielding no seeds; (b) moderate, yielding 22.3 seeds per cone; and (c) light, yielding 37.5 seeds per cone. Undamaged cones yielded on average 39.9 seeds per cone. Red squirrels removed 18.8% of the cones in 1983 and none in 1984. The spruce cone axis midge, Dasineura rachiphaga Tripp, and the spruce cone maggot, Lasiomma anthracinum (Czerny), caused minor damage in both years. Feeding by spruce cone axis midge did not reduce cone growth significantly or the number of viable seeds per cone, but feeding by the spruce cone maggot did. During both years new damage by insects to the female reproductive structures of the experimental trees was not observed after mid-July. In 1983 damage by red squirrels occurred from early to late September. In 1984 damage to cones on trees treated with dimethoate was 15.6% compared with 53.5% for untreated trees, without an increase in the number of aborted cones.


Sign in / Sign up

Export Citation Format

Share Document