Growth response of young, thinned Douglas-fir stands to nitrogen fertilizer in relation to soil properties and tree nutrition

1994 ◽  
Vol 24 (8) ◽  
pp. 1684-1688 ◽  
Author(s):  
P. Hopmans ◽  
H.N. Chappell

Application of 224 kg N/ha to young, thinned stands of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) at 35 sites in western Oregon and Washington significantly increased basal area and volume increment over 8 years following treatment. However, response varied considerably between sites, and relative volume increment exceeded 10% at only 19 of the 35 sites. Response to applied N was evaluated in relation to forest floor and soil variables as well as to levels of N in foliage. Relative responses in basal area and volume were significantly correlated with total N concentration and the C/N ratio of the soil. However, these relationships explained only part (18–22%) of the observed variation in response. In contrast, relative response was strongly correlated with the level of N in the foliage of nonfertilized trees at 11 sites, accounting for 94% of the variation between sites. Use of foliar N data clearly has potential to predict growth responses to N fertilization of young thinned Douglas-fir stands, although further work is needed to test the relationship for a wider range of sites and stands.

1984 ◽  
Vol 14 (2) ◽  
pp. 155-162 ◽  
Author(s):  
M. A. Radwan ◽  
D. S. DeBell ◽  
S. R. Webster ◽  
S. P. Gessel

Effects of different sources of fertilizer N on selected chemical characteristics of soils and foliage, and on growth of western hemlock (Tsugaheterophylla (Raf.) Sarg.) were compared at three different sites in western Washington. Treatments were the following: untreated control (O), ammonium nitrate (AN), ammonium sulfate (AS), calcium nitrate (CN), urea (U), and urea – ammonium sulfate (US). Fertilizers were applied in the spring (April–May) at 224 kg N/ha. Forest floor and mineral soil, to a depth of 5 cm, and foliage were sampled periodically for 2 years. Height and diameter of selected trees were measured periodically for 4 years. Results are reported mostly for two sites, one in the Cascade Range and one in the coastal zone in western Washington. The pH of forest floor and mineral soil varied by treatment, and the two urea fertilizers caused substantial initial rise. Effects on soil and foliar nutrients varied by fertilizer, sampling date, and location. In general, all fertilizers increased NH4 N, N03 N, and total N in the forest floor and mineral soil, and total N in the foliage. Also, with some exceptions, especially with foliar P in the Cascade site, fertilization reduced foliar content of important nutrients. At the Cascade site, 4-year growth responses in height, basal area, and volume averaged over all fertilizers were 30, 34, and 32%, respectively. AN, AS, CN, and urea resulted in height growth significantly (P < 0.20) higher than that of the control. Significant basal area growth and volume-growth responses were produced by AN, CN, and US. No significant height-growth response to any fertilizer occurred in the coastal stand; basal area growth and volume-growth responses averaged 27 and 21%, respectively, and best response occurred with urea. These results suggest that the low and inconsistent response of hemlock to N fertilization cannot be improved by applying some N fertilizer other than urea. Factors limiting response to N fertilization may be associated with availability of native N and other nutrients or other characteristics of hemlock sites and stands.


1991 ◽  
Vol 21 (4) ◽  
pp. 516-521 ◽  
Author(s):  
K. A. Stegemoeller ◽  
H. N. Chappell

Fertilization of Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stands generally increased both basal area and volume growth for at least 8 years. Thinning tended to have an even greater effect than fertilization on basal area and volume growth, increasing both on an individual-tree basis. On a land-area basis, however, the removal of growing stock by thinning caused volume growth to be less than that of the control. The magnitude and duration of this negative response was dependent on the level of thinning and the site quality. A significant positive interaction between fertilization and thinning exists. The combined treatment resulted in the greatest absolute basal area and volume increments, and the response became greater than that to fertilizer alone in the 3rd and 4th years, and remained so through at least 8 years.


2017 ◽  
pp. 31-54
Author(s):  
Martin Bobinac ◽  
Sinisa Andrasev ◽  
Andrijana Bauer-Zivkovic ◽  
Nikola Susic

The paper studies the effects of two heavy selection thinnings on the increment of Norway spruce trees exposed to ice and snow breaks in eastern Serbia. In a thinning that was carried out at 32 years of age, 556 candidates per hectare were selected for tending, and at the age of 40, of the initial candidates, 311 trees per hectare (55.9%) were selected as future trees. In all trees at 41-50 age period, diameter increment was higher by 31%, basal area increment by 64% and volume increment by 67% compared to 32-40 age period. The collective of indifferent trees is significantly falling behind compared to future trees in terms of increment values in both observed periods. However, the value of diameter, basal area and volume increments, of the collective of "comparable" indifferent trees are lower in comparison to the values of increments of future trees by 10-15% in the 32-40 age period, and by 15-21% in the 41-50 age period and there are no significant differences. The results show that heavy selective thinnings, initially directed at a larger number of candidates for tending at stand age that does not differ much from the period of carrying out first "commercial" thinnings, improve the growth potential of future and indifferent trees, where it is rational to do the tree replacement for the final crop in "susceptible" growth stage to snow and ice breaks.


2019 ◽  
Vol 49 (11) ◽  
pp. 1471-1482
Author(s):  
Woongsoon Jang ◽  
Bianca N.I. Eskelson ◽  
Louise de Montigny ◽  
Catherine A. Bealle Statland ◽  
Derek F. Sattler ◽  
...  

This study was conducted to quantify growth responses of three major commercial conifer species (lodgepole pine (Pinus contorta Douglas ex Loudon var. latifolia Engelm. ex S. Watson), interior Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. glauca (Beissn.) Franco), and spruce (white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex. Engelm. × Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carrière))) to various fertilizer blends in interior British Columbia, Canada. Over 25 years, growth-response data were repeatedly collected across 46 installations. The fertilizer blends were classified into three groups: nitrogen only; nitrogen and sulfur combined; and nitrogen, sulfur, and boron combined. The growth responses for stand volume, basal area, and top height were calculated through absolute and relative growth rate ratios relative to a controlled group. Fertilizer blend, inverse years since fertilization, site index, stand density at fertilization, and their interactions with the fertilizer blend were used as explanatory variables. The magnitude and significance of volume and basal area growth responses to fertilization differed by species, fertilizer-blend groups, and stand-condition variables (i.e., site index and stand density). In contrast, the response in top height growth did not differ among fertilization blends, with the exception of the nitrogen and sulfur fertilizer subgroup for lodgepole pine. The models developed in this study will be incorporated into the current growth and yield fertilization module (i.e., Table Interpolation Program for Stand Yields (TIPSY)), thereby supporting guidance of fertilization applications in interior forests in British Columbia.


1996 ◽  
Vol 26 (3) ◽  
pp. 376-388 ◽  
Author(s):  
A.K. Mitchell ◽  
H.J. Barclay ◽  
H. Brix ◽  
D.F.W. Pollard ◽  
R. Benton ◽  
...  

The effects of thinning (two-thirds of basal area removed) and N fertilization (448 kg N/ha as urea) on biomass and nutrition of a 24-year-old Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) stand at Shawnigan Lake were studied over 18 years. At years 0, 9, and 18 after treatments, the aboveground biomass and N, P, K, Ca, and Mg contents of stemwood, stem bark, foliage, and dead and live branches were determined (kg/ha), and increments in these properties (kg•ha−1•year−1) were calculated for the 0–9 and 9–18 year periods. Foliar biomass was increased by both treatments during the first period and also by thinning in the second period. Aboveground net primary production (ANPP) per unit of foliage biomass (foliage efficiency) was increased by treatments in the 0–9 year period. The combined effects of increased foliage mass and foliage efficiency resulted in increased total biomass production. Thinning and fertilization increased the uptake of all elements except for P with fertilization. This increase may have contributed to the long-term increase in stem growth. Retranslocation of elements before foliage shedding was important for tree nutrition, but was not improved by fertilization during the 9–18 year measurement period. The efficiency of N use in dry matter production (ANPP/unit of N uptake) was decreased by fertilization. This implied that poor sites would respond better to fertilization than rich sites.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 511 ◽  
Author(s):  
Jacob D. Putney ◽  
Douglas A. Maguire

Nitrogen (N) fertilization is a commonly applied silvicultural treatment in intensively managed coast Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco var. menziesii) plantations. Field trials were established in a randomized complete block design by Stimson Lumber Company (Gaston, Oregon), to test the economic viability of N fertilization on their ownership and to better understand Douglas-fir growth responses. The 23 stands comprising the trials were Douglas-fir dominated, had a total age of 16–24 years, had been precommercially thinned, and had a density of 386–1021 trees ha−1. Fertilizer was applied aerially at a rate of 224 kg N ha−1 as urea during the 2009–2010 dormant season. In the dormant season of 2016–2017, seven growing seasons following application, 40 trees were felled and measured with the objective of assessing crown attributes and aboveground allometrics. Branch-level foliage mass equations were developed from 267 subsampled branches and were applied to the 40 felled sample trees on which the basal diameter and height of all live branches were measured, allowing estimation of both the total amount of foliage and its vertical distribution. A right-truncated Weibull distribution was fitted to data, with the truncation point specified as the base of live tree crown. The resulting tree-level parameter estimates were modeled as functions of tree-level variables. Stand-level factors not explicitly measured were captured through the use of linear and nonlinear mixed-effects models with random stand effects. Fertilization resulted in more total crown foliage mass in the middle crown-third and caused a downward shift in the vertical distribution of foliage, with implications for feedback responses in crown development and photosynthetic capacity. Defining the morphological responses of Douglas-fir crowns to nitrogen fertilization provides a framework for studying influences on stand dynamics and should ultimately facilitate improved site-specific predictions of stem-volume growth.


1984 ◽  
Vol 116 (6) ◽  
pp. 813-826 ◽  
Author(s):  
W. Jan A. Volney ◽  
Andrew M. Liebhold ◽  
William E. Waters

AbstractBrown larval morphs, diagnostic of Choristoneura occidentalis Freeman, and green larval morphs, diagnostic of C. retiniana (Walsingham), were found on both Douglas-fir and white fir in mixed stands in south-central Oregon. The rank proportion of brown morphs in stands was strongly correlated with the rank proportion of Douglas-fir in host species basal area component. Despite considerable overlap in most phenotypic characters, differences in phenotypic frequencies between sympatric green and brown morphs were found in larval head capsule pigmentation, thoracic shield pigmentation, pupal coloration, and adult forewing ground color. In laboratory matings, neither larval host nor larval color morph influenced the mating success, as assessed by the production of viable eggs. Crosses between females reared from brown larval morphs and males from green morphs produced a slightly lower proportion of viable eggs when compared with intramorph matings. Larval host had little effect on either the fecundity of females or the viability of their progeny. Females reared from brown larval morphs produced significantly more eggs than their green counterparts from the same stand. The occurrence of intermediates in all mixed stands and the production of families with anomalous morph frequencies indicate that these two species hybridize in nature. The lack of much structural differentiation and varying efficacy of reproductive barriers indicate that relatively little differentiation of the regulatory genome has occurred between these two species.


2017 ◽  
Vol 14 (14) ◽  
pp. 3461-3469 ◽  
Author(s):  
Di Tian ◽  
Peng Li ◽  
Wenjing Fang ◽  
Jun Xu ◽  
Yongkai Luo ◽  
...  

Abstract. Reactive nitrogen (N) increase in the biosphere has been a noteworthy aspect of global change, producing considerable ecological effects on the functioning and dynamics of the terrestrial ecosystems. A number of observational studies have explored responses of plants to experimentally simulated N enrichment in boreal and temperate forests. Here we investigate how the dominant trees and different understory plants respond to experimental N enrichment in a subtropical forest in China. We conducted a 3.4-year N fertilization experiment in an old-aged subtropical evergreen broad-leaved forest in eastern China with three treatment levels applied to nine 20 m  ×  20 m plots and replicated in three blocks. We divided the plants into trees, saplings, shrubs (including tree seedlings), and ground-cover plants (ferns) according to the growth forms, and then measured the absolute and relative basal area increments of trees and saplings and the aboveground biomass of understory shrubs and ferns. We further grouped individuals of the dominant tree species, Castanopsis eyrei, into three size classes to investigate their respective growth responses to the N fertilization. Our results showed that the plot-averaged absolute and relative growth rates of basal area and aboveground biomass of trees were not affected by N fertilization. Across the individuals of C. eyrei, the small trees with a DBH (diameter at breast height) of 5–10 cm declined by 66.4 and 59.5 %, respectively, in N50 (50 kg N ha−1 yr−1) and N100 fertilized plots (100 kg N ha−1 yr−1), while the growth of median and large trees with a DBH of  >  10 cm did not significantly change with the N fertilization. The growth rate of small trees, saplings, and the aboveground biomass of understory shrubs and ground-cover ferns decreased significantly in the N-fertilized plots. Our findings suggested that N might not be a limiting nutrient in this mature subtropical forest, and that the limitation of other nutrients in the forest ecosystem might be aggravated by the enhanced N availability, potentially resulting in an adverse effect on the development of natural subtropical forest.


1998 ◽  
Vol 28 (12) ◽  
pp. 1794-1804 ◽  
Author(s):  
Richard C Yang

The aim of this study was to quantify the interactive response of lodgepole pine (Pinus contorta Dougl. var. latifolia Engelm.) to thinning and nitrogen (N) fertilization in midrotation stands by assessing foliar and stand growth response relationships and determining the optimum fertilizer regime. The experiment design was a factorial arrangement of treatments with two thinning intensities (thinned and unthinned control) and four N levels (0, 180, 360, and 540 kg·ha-1). Foliage was sampled annually from trees in buffers for 4 years following treatment and plot trees measured at a 5-year interval. Results indicated that the effect of fertilization on fascicle length and needle dry mass disappeared 2 years after N treatment, while thinning effects on foliage emerged 3 years after fertilization. Both first year fascicle length and dry mass were reliable predictors (r2 = 0.87 and 0.82, respectively) of subsequent stand volume growth. Applications of N at 360 kg·ha-1 to thinned and unthinned plots, respectively, improved 10-year periodic height increment by 20 and 19%, diameter at breast height by 29 and 34%, basal area by 21 and 36%, and total volume by 25 and 28%. Fertilization of N at this level appears to be optimal based on foliar and mensurational responses. High N loadings increased tree mortality and accelerated stand development and so it could be advantageously used as a tool for managing overstocked stands.


2005 ◽  
Vol 35 (10) ◽  
pp. 2394-2402 ◽  
Author(s):  
Douglas B Mainwaring ◽  
Douglas A Maguire ◽  
Alan Kanaskie ◽  
Jeff Brandt

Concern has risen about the degree to which Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands with severe infections of Swiss needle cast (SNC) respond to thinning. A retrospective study was established in the fall of 2001 to assess the growth of Douglas-fir stands that were commercially thinned between 4 and 10 years ago. Current SNC infection levels in these stands ranged from severe to very light. Past volume and basal area growth declined with increasing severity of SNC, as measured by current foliage retention and crown length / sapwood ratio. As has been observed in many other studies, thinning to lower residual stock reduced stand level growth; however, individual tree growth increased with lower residual stand density. The ratio of growth in successive periods and analysis of annual basal area growth since thinning suggested that trees did respond to thinning, although less so as SNC increased. A positive response to thinning, regardless of infection level, was confirmed by an analysis of annual trends in basal area growth over the first 5 years after thinning.


Sign in / Sign up

Export Citation Format

Share Document