Consistent negative temperature sensitivity and positive influence of precipitation on growth of floodplain Picea glauca in Interior Alaska

2012 ◽  
Vol 42 (3) ◽  
pp. 561-573 ◽  
Author(s):  
Glenn Patrick Juday ◽  
Claire Alix

This paper calibrates climate controls over radial growth of floodplain white spruce ( Picea glauca (Moench) Voss) and examines whether growth in these populations responds similarly to climate as upland trees in Interior Alaska. Floodplain white spruce trees hold previously unrecognized potential for long-term climate reconstruction because they are the source of driftwood that becomes frozen in coastal deposits, where archeological timbers and beach logs represent well-preserved datable material. We compared ring width chronologies for 135 trees in six stands on the Yukon Flats and Tanana River with temperature and precipitation at Fairbanks from 1912–2001. Our sample contains a stable common signal representing a strong negative relationship between summer temperature and tree growth. We developed a floodplain temperature index (FPTI), which explains half of the variability of the composite chronology, and a supplemental precipitation index (SPI) based on correlation of monthly precipitation with the residual of the temperature-based prediction of growth. We then combined FPTI and SPI into a climate favorability index (CFI) in which above-normal precipitation partially compensates for temperature-induced drought reduction of growth and vice versa. CFI and growth have been particularly low since 1969. Our results provide a basis for building longer chronologies based on archeological wood and for projecting future growth.

2013 ◽  
Vol 43 (4) ◽  
pp. 331-343 ◽  
Author(s):  
Andrea H. Lloyd ◽  
Paul A. Duffy ◽  
Daniel H. Mann

Ongoing warming at high latitudes is expected to lead to large changes in the structure and function of boreal forests. Our objective in this research is to determine the climatic controls over the growth of white spruce (Picea glauca (Moench) Voss) at the warmest driest margins of its range in interior Alaska. We then use those relationships to determine the climate variables most likely to limit future growth. We collected tree cores from white spruce trees growing on steep, south-facing river bluffs at five sites in interior Alaska, and analyzed the relationship between ring widths and climate using boosted regression trees. Precipitation and temperature of the previous growing season are important controls over growth at most sites: trees grow best in the coolest, wettest years. We identify clear thresholds in growth response to a number of variables, including both temperature and precipitation variables. General circulation model (GCM) projections of future climate in this region suggest that optimum climatic conditions for white spruce growth will become increasingly rare in the future. This is likely to cause short-term declines in productivity and, over the longer term, probably lead to a contraction of white spruce to the cooler, moister parts of its range in Alaska.


1961 ◽  
Vol 37 (2) ◽  
pp. 96-101 ◽  
Author(s):  
Daniel Gagnon

The influence of monthly rainfall on the mean annual ring width in a 31-year-old plantation of white spruce, Picea glauca (Moench) Voss, on sandy soils near Grand'Mère, Quebec, was studied. Analysis carried out on 43 dominant trees growing without competition on a very poor dry site of coarse material indicated that current mean annual ring width is closely related to the mean monthly precipitation during June, July and August of the preceding year. Although this relationship was evident for the past 18 years, the possibility that other factors may act concurrently is recognized.


1999 ◽  
Vol 29 (7) ◽  
pp. 993-1001 ◽  
Author(s):  
E C Cole ◽  
M Newton ◽  
A Youngblood

The current spruce bark beetle (Dendroctonus rufipennis Kirby) epidemic in interior Alaska is leaving large expanses of dead spruce with little spruce regeneration. Many of these areas are habitat for moose (Alces alces). To establish spruce regeneration and improve browse production for moose, paper birch (Betula papyrifera Marsh), willow (Salix spp.), and three stocktypes (plug+1 bareroot, and 1+0 plugs from two nurseries) of white spruce (Picea glauca (Moench) Voss) were planted in freshly cutover areas on Fort Richardson, near Anchorage. Four vegetation-management treatments were compared: broadcast site preparation with herbicides, banded site preparation with herbicides, mechanical scarification, and untreated control. Spruce seedlings had the greatest growth in the broadcast site preparation treatment (p < 0.01). Stocktype was the most important factor in spruce growth, with bareroot transplant seedlings being the tallest and largest 5 years after planting (p < 0.001). In the first 3 years, relative stem volume growth was greater for plug seedlings than for bareroot seedlings (p < 0.001). By year 4, relative growth rates were similar among all stocktypes. Treatment effects for paper birch and willow were confounded by moose browsing. Results indicate spruce can be regenerated and moose browse enhanced simultaneously in forests in interior Alaska.


2016 ◽  
Vol 23 (2) ◽  
pp. 14-19 ◽  
Author(s):  
U K Thapa ◽  
S K Shah ◽  
N P Gaire ◽  
D R Bhuju ◽  
A. Bhattacharyya ◽  
...  

 This study aims to understand the influence of climate on radial growth of Abies pindrow growing in the plateau of mixed forest in Khaptad National Park in Western Nepal Himalaya. Based on the dated tree-ring samples, 362-year long tree-ring width chronology was developed dating back to 1650. The studied taxa of this region was found to have dendroclimatic potentiality that was evident from the chronology statistics calculated. The tree-ring chronology was correlated with climate (temperature and precipitation) data to derive the tree-growth climate relationship. The result showed significant negative relationship with March-May temperature and positive relationship with March-May precipitation. This indicates that the availability of moisture is the primary factor in limiting the tree growth.Banko Janakari, Vol. 23, No. 2, 2013


1999 ◽  
Vol 29 (4) ◽  
pp. 413-423 ◽  
Author(s):  
R V Densmore ◽  
G P Juday ◽  
J C Zasada

Site-preparation and regeneration methods for white spruce (Picea glauca (Moench) Voss) were tested near Fairbanks, Alaska, on two upland sites which had been burned in a wildfire and salvage logged. After 5 and 10 years, white spruce regeneration did not differ among the four scarification methods but tended to be lower without scarification. Survival of container-grown planted seedlings stabilized after 3 years at 93% with scarification and at 76% without scarification. Broadcast seeding was also successful, with one or more seedlings on 80% of the scarified 6-m2 subplots and on 60% of the unscarified subplots after 12 years. Natural regeneration after 12 years exceeded expectations, with seedlings on 50% of the 6-m2 subplots 150 m from a seed source and on 28% of the subplots 230 m from a seed source. After 5 years, 37% of the scarified unsheltered seed spots and 52% of the scarified seed spots with cone shelters had one or more seedlings, but only 16% of the unscarified seed spots had seedlings, with and without funnel shelters. Growth rates for all seedlings were higher than on similar unburned sites. The results show positive effects of burning in interior Alaska, and suggest planting seedlings, broadcast seeding, and natural seedfall, alone or in combination, as viable options for similar sites.


Author(s):  
Akila Sampath

AbstractIn this study, seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 (CFSv2) are compared with station observations to assess their usefulness in producing accurate Buildup Index (BUI) forecasts for the fire season in Interior Alaska. These comparisons indicate that the CFSv2 June, July, and August (JJA) climatology (1994–2017) produces negatively biased BUI forecasts because of negative temperature and positive precipitation biases. With quantile mapping (QM) correction, the temperature and precipitation forecasts better match the observations. The long-term JJA mean BUI improves from 12 to 42 when computed using the QM-corrected forecasts. Further postprocessing of the QM-corrected BUI forecasts using the quartile classification method shows anomalously high values for the 2004 fire season, which was the worst on record in terms of the area burned by wildfires. These results suggest that the QM-corrected CFSv2 forecasts can be used to predict extreme fire events. An assessment of the classified BUI ensemble members at the subseasonal scale shows that persistently occurring BUI forecasts exceeding 150 in the cumulative drought season can be used as an indicator that extreme fire events will occur during the upcoming season. This study demonstrates the ability of QM-corrected CFSv2 forecasts to predict the potential fire season in advance. This information could therefore assist fire managers in resource allocation and disaster response preparedness.


2011 ◽  
Vol 41 (3) ◽  
pp. 469-478 ◽  
Author(s):  
M. Trindade ◽  
T. Bell ◽  
C. P. Laroque ◽  
J. D. Jacobs ◽  
L. Hermanutz

Coastal alpine forests are highly vulnerable to oceanic climate trends, yet these diverse environmental interactions remain poorly understood. We used a multispecies perspective to try to better assess the radial growth response of alpine treeline species within the Northeast Atlantic region of North America to climate variables using bootstrapped correlation analysis. The four species present, black spruce (Picea mariana (Mill.) B.S.P.), white spruce (Picea glauca (Moench) Voss), balsam fir (Abies balsamea (L.) Mill.), and eastern larch (Larix laricina (Du Roi) K. Koch) were sampled in an effort to capture tree–climate sensitivity that is representative of this entire alpine treeline. The climate–growth relationships of spruce trees were comparable with those reported in other Labrador studies, but spring drought sensitivity as reported for coastal northern white spruce trees was not observed. Rather, high levels of precipitation suggest that drought did not limit the radial growth of any of the four species. The relatively small number of statistically significant correlations between monthly climate variables and fir and larch trees suggests that factors other than climate limit their radial growth. The multispecies approach better highlighted the range of species-specific relationships between alpine treeline forests and maritime climates (monthly temperature and precipitation) found at the treeline ecotone.


1987 ◽  
Vol 65 (12) ◽  
pp. 2927-2930 ◽  
Author(s):  
L. Keith Miller ◽  
Richard A. Werner

Dendroctonus rufipennis, a serious insect pest causing periodic widespread damage to mature white spruce (Picea glauca (Moench) Voss) stands in Alaska, was studied to determine if either larvae or adults were freezing-tolerant. Mean supercooling points in both larvae and adults dropped from −12 °C in summer to about −31 °C in winter. The decrease in supercooling points in larvae was closely associated with synthesis of glycerol, but the decline in adult supercooling points partially preceded the synthesis of glycerol in the fall. Winter glycerol levels reached 3 molal. Neither larvae nor adults were freezing-tolerant at any time of the year. Measurement of temperatures beneath the bark of standing spruce showed that only beetles hibernating below the snowline would be expected to survive a typical winter.


IAWA Journal ◽  
2000 ◽  
Vol 21 (3) ◽  
pp. 335-345 ◽  
Author(s):  
S. Fujiwara ◽  
K. C. Yang

Variation in cell length and the relationship between cell length and ring width and circumferential growth rate were studied in jack pine (Pinus banksiana Lamb.), balsam fir (Abies balsamea Mill.), white spruce (Picea glauca Voss), black spruce (Picea mariana Britton, Sterns & Pogg.) and trembling aspen (Populus tremuloides Michx.) collected in the natural forest in Ontario, Canada. There was a negative relationship between cell length and ring width in jack pine, balsam fir and black spruce, and a positive relationship in trembling aspen. No relationship was found in white spruce. There was a negative relationship between tracheid length and circumferential growth rate in all conifers. In trembling aspen fibre length decreased in both higher and lower circumferential growth rate. Circumferential growth rate is a good index of the effect of tree growth on cell length.


Sign in / Sign up

Export Citation Format

Share Document