Effects of climate change and nitrogen deposition on the carbon sequestration of a forest ecosystem in the boreal zone

1999 ◽  
Vol 29 (10) ◽  
pp. 1490-1501 ◽  
Author(s):  
Raisa Mäkipää ◽  
Timo Karjalainen ◽  
Ari Pussinen ◽  
Seppo Kellomäki

Global warming and nitrogen deposition are expected to modify the carbon sequestration of boreal forests, causing feedback to atmospheric CO2 and climate. The objective of this study was to assess the effects of climate change and various N deposition rates on C sequestration of a forest ecosystem. The study uses a gap-type forest model for a managed Scots pine (Pinus sylvestris L.) stand in conditions representing southern Finland. Model computations indicated that, for both current and changed (+4°C and +10% in precipitation) climatic conditions, increased levels of N deposition from 6 to 12 kg·ha-1 per year increased C uptake by 4-6.5%. Total C stock (vegetation, litter, and soil organic matter) was 11% higher for current level of N deposition than without deposition. Changed climate resulted in a 10% higher C stock of the vegetation but 30% lower C stock in the forest soil. Consequently, the total C stock in forests was decreased because of the greater decline in soil C stock. The combined effects of climate change and N deposition decreased the average C stock of forest (over a 100-year rotation period) with annual deposition rates under 12 kg N·ha-1 but slightly increased C stock with deposition of 24 kg N·ha-1.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Michael T. Ter-Mikaelian ◽  
Alemu Gonsamo ◽  
Jing M. Chen ◽  
Gang Mo ◽  
Jiaxin Chen

Abstract Background Forests in the Far North of Ontario (FNO), Canada, are likely the least studied in North America, and quantifying their current and future carbon (C) stocks is the first step in assessing their potential role in climate change mitigation. Although the FNO forests are unmanaged, the latter task is made more important by growing interest in developing the region’s natural resources, primarily for timber harvesting. In this study, we used a combination of field and remotely sensed observations with a land surface model to estimate forest C stocks in the FNO forests and to project their future dynamics. The specific objective was to simulate historical C stocks for 1901–2014 and future C stocks for 2015–2100 for five shared socioeconomic pathway (SSP) scenarios selected as high priority scenarios for the 6th Assessment Report on Climate Change. Results Carbon stocks in live vegetation in the FNO forests remained relatively stable between 1901 and 2014 while soil organic carbon (SOC) stocks steadily declined, losing about 16% of their initial value. At the end of the historical simulation (in 2014), the stocks were estimated at 19.8, 46.4, and 66.2 tCha−1 in live vegetation, SOC, and total ecosystem pools, respectively. Projections for 2015–2100 indicated effectively no substantial change in SOC stocks, while live vegetation C stocks increased, accelerating their growth in the second half of the twenty-first century. These results were consistent among all simulated SSP scenarios. Consequently, increase in total forest ecosystem C stocks by 2100 ranged from 16.7 to 20.7% of their value in 2015. Simulations with and without wildfires showed the strong effect of fire on forest C stock dynamics during 2015–2100: inclusion of wildfires reduced the live vegetation increase by half while increasing the SOC pool due to higher turnover of vegetation C to SOC. Conclusions Forest ecosystem C stock estimates at the end of historical simulation period were at the lower end but within the range of values reported in the literature for northern boreal forests. These estimates may be treated as conservatively low since the area included in the estimates is poorly studied and some of the forests may be on peat deposits rather than mineral soils. Future C stocks were projected to increase in all simulated SSP scenarios, especially in the second half of the twenty-first century. Thus, during the projected period forest ecosystems of the FNO are likely to act as a C sink. In light of growing interest in developing natural resources in the FNO, collecting more data on the status and dynamics of its forests is needed to verify the above-presented estimates and design management activities that would maintain their projected C sink status.


2021 ◽  
Vol 33 (1) ◽  
Author(s):  
Angela Schlutow ◽  
Winfried Schröder ◽  
Martin Jenssen ◽  
Stefan Nickel

Abstract Background The EU Biodiversity Strategy to 2020 foresees that Member States assess conditions and potential developments of ecosystems under climate change and atmospheric nitrogen deposition. This combination of environmental impacts has never been modelled for the German territory before. Therefore, the aim of the presented dynamic modelling of soil parameters under the influence of changing atmospheric nitrogen deposition with simultaneous climate change at representative sites in Germany was to derive knowledge about the expected development of ecosystem conditions up to a possible change of the respective site-specific current ecosystem type. The dynamic modelling was performed with the Very Simple Dynamic soil model. The selection of 15 modelling sites regarded the availability of data from environmental monitoring programmes routinely operated by public institutions and the aptitude of data for parametrising the soil model. The most important input data are time series of nitrogen and acid deposition as well as time series of the relevant climatic-ecological parameters. The simulation period covered the years 1920–2070. Results There are no continuous linear correlations between the level of acidifying or eutrophying inputs and the course of soil parameter values. The step-like courses result from the resilience of the ecosystems within certain parameter ranges. Atmospheric nitrogen deposition has led to nitrogen saturation at 14 of 15 sites selected for modelling. Currently, no linear (negative) correlation between nitrogen deposition and carbon/nitrogen ratio could be established at these sites any more. An increase in the N-content in the soil was only slight, if at all. On the other hand, the nitrate concentration in the leachate increases in correlation to the N deposition. A clear (negative) correlation was found for the dependence of the C/N ratio on the temperature development in connection with climate change. The predicted air temperature rise until 2070 will also cause a decrease of the carbon content in the future, caused by the increasing activity of decomposing soil organisms. Thus, the drastic decrease of the C/N ratio at all of the study sites is due to the significant decrease in the C content. The validation shows that the dynamic modelling of abiotic site parameters has delivered plausible results at the investigated sites. The applicability of the results could be demonstrated. Thus, the evaluation of the time series of soil and climate parameters resulted in forest ecosystem types that are capable of self-regeneration in the future under the conditions of air pollutant inputs and climate change. Conclusions The dynamic modelling of soil parameters under the influence of atmospheric nitrogen deposition and of climate change enables to transparently rank the potential development of ecosystem conditions up to a possible extinction of the current ecosystem type. Thus, the soil modelling approach presented contributes to the implementation of the European Biodiversity Strategy.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1350
Author(s):  
Irene Criscuoli ◽  
Maurizio Ventura ◽  
Katja Wiedner ◽  
Bruno Glaser ◽  
Pietro Panzacchi ◽  
...  

Biochar has been shown to improve soil quality and crop yields. Furthermore, thanks to its high carbon content (C) and stable chemical structure, biochar can sequester C in the soil for a long time, mitigating climate change. However, the variability in published biochar stability in the soil makes verifying this trait under different environmental and agricultural conditions necessary. Moreover, most of the published literature refers to short-term incubation experiments, which are considered to not adequately represent long-term dynamics under field conditions. This article reports the results of a field experiment carried out in a vineyard near Merano, northern Italy, where the stability of woodchips biochar in soil, its impact on the total soil C stocks as well as on the original soil organic C (priming effect) were studied over two years. Vineyard soil (Dystric Eutrochrept) was amended with biochar (25 and 50 t ha−1) alone or together with compost (45 t ha−1) and compared with unamended control soil. Two methods assessed the stability of biochar in soil: the isotopic mass balance approach and the quantification of Benzene PolyCarboxylic Acids (BPCAs), molecular markers of biochar. The amount of C in the soil organic matter (SOM-C) was determined in the amended plots by subtracting the amount of biochar-C from the total soil organic C stock, and the occurrence of priming effect was verified by comparing SOM-C values at the beginning and at the end of the experiment. Results did not show any significant biochar degradation for both application rates, but results were characterized by a high variation. The application of 50 t ha−1 of biochar significantly increased soil C stock while no effect of biochar on the degradation of SOM-C was observed. Results were confirmed in the case of biochar application together with compost. It can be concluded that the use of woodchips biochar as a soil amendment can increase soil C content in the medium term. However, further analyses are recommended to evaluate the impact of biochar on climate change mitigation in the long term.


2017 ◽  
Vol 26 (2) ◽  
pp. eR04S ◽  
Author(s):  
Ricardo Ruiz-Peinado ◽  
Andrés Bravo-Oviedo ◽  
Eduardo López-Senespleda ◽  
Felipe Bravo ◽  
Miren Del Rio

Aim of the study: To review and acknowledge the value of carbon sequestration by forest management in the Mediterranean area.Material and methods: We review the main effects of forest management by comparing the effects of silvicultural systems (even-aged vs. uneven-aged stands, coppice systems, agroforestry systems), silvicultural options (thinning, rotation period, species composition), afforestation, harvesting, fire impact or effects of shrub layer on carbon sequestration in the Mediterranean area.Main results: We illustrate as forest management can clearly improve forest carbon sequestration amounts. We conclude that forest management is an effective way to maintain and enhance high carbon sequestration rates in order to cope with climate change and provision of ecosystem services. We also think that although much effort has been put into this topic research, there are still certain gaps that must be dealt with to increase our scientific knowledge and in turn transfer this knowledge to forest practitioners in order to achieve sustainable management aimed at mitigating climate change.Research highlights: It is important to underline the importance of forests in the carbon cycle as this role can be enhanced by forest managers through sustainable forest management. The effects of different management options or disturbances can be critical as regards mitigating climate change. Understanding the effects of forest management is even more important in the Mediterranean area, given that the current high climatic variability together with historical human exploitation and disturbance events make this area more vulnerable to the effects of climate change


2009 ◽  
Vol 6 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Z. Tan ◽  
L. L. Tieszen ◽  
E. Tachie-Obeng ◽  
S. Liu ◽  
A. M. Dieye

Abstract. We used the General Ensemble biogeochemical Modeling System (GEMS) to simulate responses of natural and managed ecosystems to changes in land use and land cover, management, and climate for a forest/savanna transitional zone in central Ghana. Model results show that deforestation for crop production during the 20th century resulted in a substantial reduction in ecosystem carbon (C) stock from 135.4 Mg C ha−1 in 1900 to 77.0 Mg C ha−1 in 2000, and in soil organic C stock within the top 20 cm of soil from 26.6 Mg C ha−1 to 21.2 Mg C ha−1. If no land use change takes place from 2000 through 2100, low and high climate change scenarios (increase in temperature and decrease in precipitation over time) will result in losses of soil organic C stock by 16% and 20%, respectively. A low nitrogen (N) fertilization rate is the principal constraint on current crop production. An increase in N fertilization under the low climate change scenario would lead to an increase in the average crop yield by 21% with 30 kg N ha−1 and by 42% with 60 kg N ha−1 (varying with crop species), accordingly, the average soil C stock would decrease by 2% and increase by 17%, in all cropping systems by 2100. The results suggest that a reasonable N fertilization rate is critical to achieve food security and agricultural sustainability in the study area through the 21st century. Adaptation strategies for climate change in this study area require national plans to support policies and practices that provide adequate N fertilizers to sustain soil C and crop yields and to consider high temperature tolerant crop species if these temperature projections are exceeded.


2022 ◽  
Vol 14 (2) ◽  
pp. 914
Author(s):  
Heba Elbasiouny ◽  
Hassan El-Ramady ◽  
Fathy Elbehiry ◽  
Vishnu D. Rajput ◽  
Tatiana Minkina ◽  
...  

The climate is one of the key elements impacting several cycles connected to soil and plant systems, as well as plant production, soil quality, and environmental quality. Due to heightened human activity, the rate of CO2 is rising in the atmosphere. Changing climatic conditions (such as temperature, CO2, and precipitation) influence plant nutrition in a range of ways, comprising mineralization, decomposition, leaching, and losing nutrients in the soil. Soil carbon sequestration plays an essential function—not only in climate change mitigation but also in plant nutrient accessibility and soil fertility. As a result, there is a significant interest globally in soil carbon capture from atmospheric CO2 and sequestration in the soil via plants. Adopting effective management methods and increasing soil carbon inputs over outputs will consequently play a crucial role in soil carbon sequestration (SCseq) and plant nutrition. As a result, boosting agricultural yield is necessary for food security, notoriously in developing countries. Several unanswered problems remain regarding climate change and its impacts on plant nutrition and global food output, which will be elucidated over time. This review provides several remarkable pieces of information about the influence of changing climatic variables on plant nutrients (availability and uptake). Additionally, it addresses the effect of soil carbon sequestration, as one of climate change mitigations, on plant nutrition and how relevant management practices can positively influence this.


2021 ◽  
Author(s):  
Matthias Volk ◽  
Matthias Suter ◽  
Anne-Lena Wahl ◽  
Seraina Bassin

Abstract. Climate change is associated with a change in soil organic carbon (SOC) stocks, implying a feedback mechanism on global warming. Grassland soils represent 28 % of the global soil C sink and are therefore important for the atmospheric greenhouse gas concentration. In a field experiment in the Swiss Alps we recorded changes in the ecosystem organic carbon stock under climate change conditions, while quantifying the ecosystem C fluxes at the same time (ecosystem respiration, gross primary productivity, C export in plant material and leachate water). We exposed 216 grassland monoliths to six different climate scenarios (CS) in an altitudinal transplantation experiment. In addition, we applied an irrigation treatment (+12–21 % annual precipitation) and an N deposition treatment (+3 and +15 kg N ha−1 a−1) in a factorial design, simulating summer-drought mitigation and atmospheric N pollution. In five years the ecosystem C stock, consisting of plant C and SOC, dropped dramatically by about −14 % (−1034 ± 610 g C m−2) with the CS treatment representing a +3.0 °C seasonal (Apr.–Oct.) warming. N deposition and the irrigation treatment caused no significant effects. Measurements of C fluxes revealed that ecosystem respiration increased by 10 % at the +1.5 °C warmer CS site and by 38 % at the +3 °C warmer CS site (P ≤ 0.001 each), compared to the CS reference site with no warming. However, gross primary productivity was unaffected by warming, as were the amounts of exported C in harvested plant material and leachate water (dissolved organic C). As a result, the five year C flux balance resulted in a climate scenario effect of −936 ± 138 g C m−2 at the +3.0 °C CS, similar to the C stock climate scenario effect. It is likely that this dramatic C loss of the grassland is a transient effect before a new, climate adjusted steady state is reached.


Sign in / Sign up

Export Citation Format

Share Document