Systemic hemodynamic function in humans with type 1 diabetes treated with protein kinase Cβ inhibition and renin–angiotensin system blockade: a pilot study

2012 ◽  
Vol 90 (1) ◽  
pp. 113-121 ◽  
Author(s):  
David Z.I. Cherney ◽  
Heather N. Reich ◽  
James W. Scholey ◽  
Vesta Lai ◽  
Cameron Slorach ◽  
...  

The protein kinase Cβ (PKCβ) system has been implicated in the deleterious vascular responses to hyperglycemia and angiotensin II (Ang II) in experimental models of diabetes (DM). Whether these interactions are important in humans is unknown. Flow-mediated vasodilatation (FMD) was measured during clamped euglycemia and hyperglycemia, before and after randomization to PKCβ inhibition (ruboxistaurin; RBX, 32 mg daily, n = 13) or a placebo (n = 7) for 8 weeks in renin–angiotensin system (RAS) blockade-treated subjects with type 1 DM. Blood pressure responses to infused Ang II were measured before and after randomization to RBX or a placebo. The RBX and placebo groups displayed similar clinical characteristics. Before RBX, FMD declined in response to hyperglycemia (6.8% ± 2.8% to 4.9% ± 1.8%). This effect was reversed after treatment with RBX (5.6% ± 3.1% to 6.0% ± 1.6% (within-group change, p = 0.009 (ANOVA)). No changes were observed in the placebo group. Infused Ang II was associated with hypertensive responses in the RBX and placebo groups (p < 0.05 (ANOVA)), and RBX did not influence this effect. In conclusion, RBX blunted the effect of hyperglycemia on FMD, suggesting that PKCβ may modulate endothelial function in type 1 DM. The lack of effect on Ang II responses suggests that PKCβ inhibition may act through non-RAS pathways in humans with DM.

2020 ◽  
Vol 319 (2) ◽  
pp. L325-L336 ◽  
Author(s):  
Riccardo Sarzani ◽  
Federico Giulietti ◽  
Chiara Di Pentima ◽  
Piero Giordano ◽  
Francesco Spannella

A dysregulation of the renin-angiotensin system (RAS) has been involved in the genesis of lung injury and acute respiratory distress syndrome from different causes, including several viral infections. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of pneumocytes, the hallmark of the pandemic coronavirus disease 2019 (COVID-19) involving both alveolar interstitium and capillaries, is linked to angiotensin-converting enzyme 2 (ACE2) binding and its functional downregulation. ACE2 is a key enzyme for the balance between the two main arms of the RAS: the ACE/angiotensin (Ang) II/Ang II type 1 receptor axis (“classic RAS”) and the ACE2/Ang(1–7)/Mas receptor (MasR) axis (“anti-RAS”). The ACE2 downregulation, as a result of SARS-coronaviruses binding, enhances the classic RAS, leading to lung damage and inflammation with leaky pulmonary blood vessels and fibrosis, when the attenuation mediated by the anti-RAS arm is reduced. ACE inhibitors (ACE-I) and Ang II type 1 receptor blockers (ARB), effective in cardiovascular diseases, were found to prevent and counteract acute lung injury in several experimental models by restoring the balance between these two opposing arms. The evidence of RAS arm disequilibrium in COVID-19 and the hypothesis of a beneficial role of RAS modulation supported by preclinical and clinical studies are the focus of the present review. Preclinical and clinical studies on drugs balancing RAS arms might be the right way to counter COVID-19.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Jorge F Giani ◽  
Tea Djandjoulia ◽  
Nicholas Fetcher ◽  
Sebastien Fuchs ◽  
Dale M Seth ◽  
...  

Introduction: The responses to chronic angiotensin (Ang) II infusions of gene-targeted mice lacking kidney angiotensin-converting enzyme (ACE), in terms of intrarenal Ang II accumulation, hypertension, sodium and water retention are all blunted or absent. The objective of this study was to determine if these reduced responses were associated with changes in the intrarenal renin-angiotensin system (RAS). METHODS: Mice lacking intrarenal ACE (ACE10/10) were generated by targeted homologous recombination placing the expression of ACE only in macrophages. As a result, these mice have normal circulating ACE levels, but no kidney ACE. Wild-type (WT) mice of the same background (C57Bl/J) served as controls. Mice were subjected to sham-operation or subcutaneous infusion of Ang II for two weeks (n=6-10, 400 ng/kg/min via osmotic minipump). Mean arterial pressure (MAP) was followed by telemetry. At the end of the experiment, the kidneys were collected for analysis. Ang II content was measured by RIA. Renal abundance of ACE, angiotensinogen (AGT) and Ang II receptor type 1 (AT1R) were determined by Western Blot in total kidney homogenates. Results: At baseline, the MAP of WT and ACE 10/10 mice was similar 110 ± 4 mmHg vs. 109 ± 3 mmHg respectively (p>0.05). However, when subjected to chronic Ang II infusions, the hypertensive response was blunted in ACE 10/10 mice (129 ± 6 mmHg) vs. WT (146 ± 5 mmHg; P<0.05). Also, intrarenal Ang II accumulation was lower in ACE10/10 mice (724 ± 81 fmol/g) vs. WT (1130 ± 105 fmol/g, p<0.05). In non-treated mice, intrarenal RAS components analysis revealed that the absence of ACE in ACE10/10 mice was accompanied by a significant reduction in AGT (0.41 ± 0.06) and increased AT1R expression (1.32 ± 0.05) when compared to WT (normalized to 1.00, p<0.05 in both instances). Importantly, after chronic Ang II infusions, AGT, ACE and AT1R expression increased in WT (1.36, 1.26 and 1.17 fold increase respectively compared to non-treated WT, p<0.05) but not in the ACE10/10 mice (1.19, 1.06, 0.89 fold increase respectively compared to non-treated ACE10/10, p>0.05). Conclusion: The blunted hypertension and Ang II accumulation of mice devoid of kidney ACE in response to Ang II infusions is associated with a failed induction of renal AGT and the AT1R.


2007 ◽  
Vol 292 (5) ◽  
pp. H2523-H2531 ◽  
Author(s):  
Steven J. Miller ◽  
Laura E. Norton ◽  
Michael P. Murphy ◽  
Michael C. Dalsing ◽  
Joseph L. Unthank

Recent clinical and animal studies have shown that collateral artery growth is impaired in the presence of vascular risk factors, including hypertension. Available evidence suggests that angiotensin-converting enzyme inhibitors (ACEI) promote collateral growth in both hypertensive humans and animals; however, the specific mechanisms are not established. This study evaluated the hypothesis that collateral growth impairment in hypertension is mediated by excess superoxide produced by NAD(P)H oxidase in response to stimulation of the ANG II type 1 receptor. After ileal artery ligation, mesenteric collateral growth did not occur in untreated, young, spontaneously hypertensive rats. Significant luminal expansion occurred in collaterals of spontaneously hypertensive rats treated with the superoxide dismutase mimetic tempol, the NAD(P)H oxidase inhibitor apocynin, and the ACEI captopril, but not ANG II type 1 (losartan) or type 2 (PD-123319) receptor blockers. The ACEI enalapril produced equivalent reduction of arterial pressure as captopril but did not promote luminal expansion. This suggests the effects of captopril on collateral growth might result from its antioxidant properties. RT-PCR demonstrated that ANG II type 1 receptor and angiotensinogen expression was reduced in collaterals of untreated rats. This local suppression of the renin angiotensin system provides a potential explanation for the lack of effect of enalapril and losartan on collateral growth. The results demonstrate the capability of antioxidant therapies, including captopril, to reverse impaired collateral artery growth and the novel finding that components of the local renin angiotensin system are naturally suppressed in collaterals.


2018 ◽  
Vol 315 (5) ◽  
pp. R895-R906 ◽  
Author(s):  
Joshua M. Oakes ◽  
Robert M. Fuchs ◽  
Jason D. Gardner ◽  
Eric Lazartigues ◽  
Xinping Yue

Cigarette smoking is the single most important risk factor for the development of cardiovascular and pulmonary diseases (CVPD). Although cigarette smoking has been in constant decline since the 1950s, the introduction of e-cigarettes or electronic nicotine delivery systems 10 yr ago has attracted former smokers as well as a new generation of consumers. Nicotine is a highly addictive substance, and it is currently unclear whether e-cigarettes are “safer” than regular cigarettes or whether they have the potential to reverse the health benefits, notably on the cardiopulmonary system, acquired with the decline of tobacco smoking. Of great concern, nicotine inhalation devices are becoming popular among young adults and youths, emphasizing the need for awareness and further study of the potential cardiopulmonary risks of nicotine and associated products. This review focuses on the interaction between nicotine and the renin-angiotensin system (RAS), one of the most important regulatory systems on autonomic, cardiovascular, and pulmonary functions in both health and disease. The literature presented in this review strongly suggests that nicotine alters the homeostasis of the RAS by upregulating the detrimental angiotensin-converting enzyme (ACE)/angiotensin (ANG)-II/ANG II type 1 receptor axis and downregulating the compensatory ACE2/ANG-(1–7)/Mas receptor axis, contributing to the development of CVPD.


Hypertension ◽  
2020 ◽  
Vol 76 (5) ◽  
pp. 1350-1367 ◽  
Author(s):  
Matthew A. Sparks ◽  
Andrew M. South ◽  
Andrew D. Badley ◽  
Carissa M. Baker-Smith ◽  
Daniel Batlle ◽  
...  

The coronavirus disease 2019 (COVID-19) pandemic is associated with significant morbidity and mortality throughout the world, predominantly due to lung and cardiovascular injury. The virus responsible for COVID-19—severe acute respiratory syndrome coronavirus 2—gains entry into host cells via ACE2 (angiotensin-converting enzyme 2). ACE2 is a primary enzyme within the key counter-regulatory pathway of the renin-angiotensin system (RAS), which acts to oppose the actions of Ang (angiotensin) II by generating Ang-(1–7) to reduce inflammation and fibrosis and mitigate end organ damage. As COVID-19 spans multiple organ systems linked to the cardiovascular system, it is imperative to understand clearly how severe acute respiratory syndrome coronavirus 2 may affect the multifaceted RAS. In addition, recognition of the role of ACE2 and the RAS in COVID-19 has renewed interest in its role in the pathophysiology of cardiovascular disease in general. We provide researchers with a framework of best practices in basic and clinical research to interrogate the RAS using appropriate methodology, especially those who are relatively new to the field. This is crucial, as there are many limitations inherent in investigating the RAS in experimental models and in humans. We discuss sound methodological approaches to quantifying enzyme content and activity (ACE, ACE2), peptides (Ang II, Ang-[1–7]), and receptors (types 1 and 2 Ang II receptors, Mas receptor). Our goal is to ensure appropriate research methodology for investigations of the RAS in patients with severe acute respiratory syndrome coronavirus 2 and COVID-19 to ensure optimal rigor and reproducibility and appropriate interpretation of results from these investigations.


1991 ◽  
Vol 260 (3) ◽  
pp. H770-H778 ◽  
Author(s):  
P. K. Dorward ◽  
C. D. Rudd

The role of the brain renin-angiotensin system (RAS) in the baroreflex regulation of renal sympathetic nerve activity (RSNA) and heart rate (HR) was studied in conscious rabbits. RSNA and HR were recorded during slow ramp changes in mean arterial pressure (MAP) before and after intraventricular infusion of 1) angiotensin II (ANG II), 2) ANG II receptor antagonist, [Sar1,Ile8]ANG II, or 3) converting enzyme inhibitor (CEI, enalaprilat). Central ANG II increased resting MAP and RSNA by 10.6 +/- 0.9 mmHg and 21 +/- 7%, respectively, but did not alter HR. There was a marked increase of 107 +/- 15% in the maximum RSNA evoked by slowly lowering MAP. In contrast, maximum reflex tachycardia was only modestly elevated, and baroreflex inhibition of RSNA and HR during MAP rises was unaffected. Central [Sar1,Ile8]ANG II had no effect on RSNA or HR, either at rest or during baroreflex responses, while CEI slightly enhanced maximal reflex responses. Thus exogenous ANG II causes a powerful excitation of renal sympathetic motoneurons, the magnitude of which is revealed when tonic baroreceptor inhibition is removed during transient pressure falls. However, in quietly resting conscious rabbits, we found no evidence for a tonic influence of endogenous ANG II on these neurons, and the physiological stimuli required for their activation by the brain RAS remain to be found.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Maki Urushihara ◽  
Yukiko Kinoshita ◽  
Shuji Kondo ◽  
Shoji Kagami

The intrarenal renin-angiotensin system (RAS) has several pathophysiologic functions not only in blood pressure regulation but also in the development of glomerulonephritis (GN). Angiotensin II (Ang II) is the biologically active product of the RAS. Locally produced Ang II induces inflammation, renal cell growth, mitogenesis, apoptosis, migration, and differentiation, regulates the gene expression of bioactive substances, and activates multiple intracellular signaling pathways, leading to tissue damage. Activation of the Ang II type 1 (AT1) receptor pathway results in the production of proinflammatory mediators, cell proliferation, and extracellular matrix synthesis, which facilitates glomerular injury. Previous studies have shown that angiotensin-converting enzyme inhibitors and/or AT1 receptor blockers have beneficial effects in experimental GN models and humans with various types of GN, and that these effects are more significant than their suppressive effects on blood pressure. In this paper, we focus on intrarenal RAS activation in the pathophysiology of experimental models of GN.


2015 ◽  
Vol 309 (5) ◽  
pp. R444-R458 ◽  
Author(s):  
Annette D. de Kloet ◽  
Meng Liu ◽  
Vermalí Rodríguez ◽  
Eric G. Krause ◽  
Colin Sumners

Despite tremendous research efforts, hypertension remains an epidemic health concern, leading often to the development of cardiovascular disease. It is well established that in many instances, the brain plays an important role in the onset and progression of hypertension via activation of the sympathetic nervous system. Further, the activity of the renin-angiotensin system (RAS) and of glial cell-mediated proinflammatory processes have independently been linked to this neural control and are, as a consequence, both attractive targets for the development of antihypertensive therapeutics. Although it is clear that the predominant effector peptide of the RAS, ANG II, activates its type-1 receptor on neurons to mediate some of its hypertensive actions, additional nuances of this brain RAS control of blood pressure are constantly being uncovered. One of these complexities is that the RAS is now thought to impact cardiovascular control, in part, via facilitating a glial cell-dependent proinflammatory milieu within cardiovascular control centers. Another complexity is that the newly characterized antihypertensive limbs of the RAS are now recognized to, in many cases, antagonize the prohypertensive ANG II type 1 receptor (AT1R)-mediated effects. That being said, the mechanism by which the RAS, glia, and neurons interact to regulate blood pressure is an active area of ongoing research. Here, we review the current understanding of these interactions and present a hypothetical model of how these exchanges may ultimately regulate cardiovascular function.


2014 ◽  
Vol 307 (1) ◽  
pp. H25-H32 ◽  
Author(s):  
Matthew J. Durand ◽  
Shane A. Phillips ◽  
Michael E. Widlansky ◽  
Mary F. Otterson ◽  
David D. Gutterman

Increased intraluminal pressure can reduce endothelial function in resistance arterioles; however, the mechanism of this impairment is unknown. The purpose of this study was to determine the effect of local renin-angiotensin system inhibition on the pressure-induced blunting of endothelium-dependent vasodilation in human adipose arterioles. Arterioles (100–200 μm) were dissected from fresh adipose surgical specimens, cannulated onto glass micropipettes, pressurized to an intraluminal pressure of 60 mmHg, and constricted with endothelin-1. Vasodilation to ACh was assessed at 60 mmHg and again after a 30-min exposure to an intraluminal pressure of 150 mmHg. The vasodilator response to ACh was significantly reduced in vessels exposed to 150 mmHg. Exposure of the vessels to the superoxide scavenger polyethylene glycol-SOD (100 U/ml), the ANG II type 1 receptor antagonist losartan (10−6 mol/l), or the angiotensin-converting enzyme inhibitor captopril (10−5 mol/l) prevented the pressure-induced reduction in ACh-dependent vasodilation observed in untreated vessels. High intraluminal pressure had no effect on papaverine-induced vasodilation or ANG II sensitivity. Increased intraluminal pressure increased dihydroethidium fluorescence in cannulated vessels, which could be prevented by polyethylene glycol-SOD or losartan treatment and endothelial denudation. These data indicate that high intraluminal pressure can increase vascular superoxide and reduce nitric oxide-mediated vasodilation via activation of the vascular renin-angiotensin system. This study provides evidence showing that the local renin-angiotensin system in the human microvasculature may be pressure sensitive and contribute to endothelial dysfunction after acute bouts of hypertension.


2010 ◽  
Vol 298 (1) ◽  
pp. F150-F157 ◽  
Author(s):  
Romer A. Gonzalez-Villalobos ◽  
Ryousuke Satou ◽  
Naro Ohashi ◽  
Laura C. Semprun-Prieto ◽  
Akemi Katsurada ◽  
...  

Angiotensin-converting enzyme (ACE) inhibition (ACEi) ameliorates the development of hypertension and the intrarenal ANG II augmentation in ANG II-infused mice. To determine if these effects are associated with changes in the mouse intrarenal renin-angiotensin system, the expression of angiotensinogen (AGT), renin, ACE, angiotensin type 1 receptor (AT1R) mRNA (by quanitative RT-PCR) and protein [by Western blot (WB) and/or immunohistochemistry (IHC)] were analyzed. C57BL/6J male mice (9–12 wk old) were distributed as controls ( n = 10), ANG II infused (ANG II = 8, 400 ng·kg−1·min−1 for 12 days), ACEi only (ACEi = 10, lisinopril, 100 mg/l), and ANG II infused + ACEi (ANG II + ACEi = 11). When compared with controls (1.00), AGT protein (by WB) was increased by ANG II (1.29 ± 0.13, P < 0.05), and this was not prevented by ACEi (ACEi + ANG II, 1.31 ± 0.14, P < 0.05). ACE protein (by WB) was increased by ANG II (1.21 ± 0.08, P < 0.05), and it was reduced by ACEi alone (0.88 ± 0.07, P < 0.05) or in combination with ANG II (0.80 ± 0.07, P < 0.05). AT1R protein (by WB) was increased by ANG II (1.27 ± 0.06, P < 0.05) and ACEi (1.17 ± 0.06, P < 0.05) but not ANG II + ACEi [1.15 ± 0.06, not significant (NS)]. Tubular renin protein (semiquantified by IHC) was increased by ANG II (1.49 ± 0.23, P < 0.05) and ACEi (1.57 ± 0.15, P < 0.05), but not ANG II + ACEi (1.10 ± 0.15, NS). No significant changes were observed in AGT, ACE, or AT1R mRNA. In summary, reduced responses of intrarenal tubular renin, ACE, and the AT1R protein to the stimulatory effects of chronic ANG II infusions, in the presence of ACEi, are associated with the effects of this treatment to ameliorate augmentations in blood pressure and intrarenal ANG II content during ANG II-induced hypertension.


Sign in / Sign up

Export Citation Format

Share Document