Aspects of the structure and composition of baleen, and some effects of exposure to petroleum hydrocarbons

1984 ◽  
Vol 62 (2) ◽  
pp. 193-198 ◽  
Author(s):  
D. J. St. Aubin ◽  
R. H. Stinson ◽  
J. R. Geraci

The structure and composition of baleen from seven species of whales was studied using tensiometry. X-ray diffraction, and elemental analysis. Baleen was found to be composed principally of amorphous and α-keratin. Hydroxyapatite (bone mineral, Ca10 (PO4)6 OH2) was present in all species. Certain elements, notably manganese, copper, boron, iron, and calcium were more highly concentrated in the fibers than in the matrix of the plate. The breaking strength of baleen plates from fin (Balaenoptera physalus), sei (B. borealis), and grey (Eschrichtius robustus) whales was comparable to that of buffalo horn, in the range of 2−9 × 106 N∙m−2. The stiffness of baleen was somewhat less than that of other keratinized tissues. Treatment with 10% (v/v) trichloroacetic acid for 8 days removed most of the calcium salts, denatured α-keratin, and made fin whale plates stronger and stiffer. Exposure to gasoline for 1.5 h or 14 days, crude oil for 8 days, or tar for 21 days resulted in loss of trace elements from baleen, and inconsistent changes in keratin organization. After tar exposure, fin whale baleen plates were stiffer and stronger. We presume that at sea, baleen would be relatively resistant to damage by spilled oil.

2017 ◽  
Vol 31 (16-19) ◽  
pp. 1744031
Author(s):  
Wenjing Chen ◽  
Hui Chen ◽  
Yongjing Wang ◽  
Congchen Li ◽  
Xiaoli Wang

The Ni–Cr–Fe metal powder was deposited on EA4T steel by laser cladding technology. The microstructure and chemical composition of the cladding layer were analyzed by optical microscopy (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The bonding ability between the cladding layer and the matrix was measured. The results showed that the bonding between the cladding layer and the EA4T steel was metallurgical bonding. The microstructure of cladding layer was composed of planar crystals, columnar crystals and dendrite, which consisted of Cr2Ni3, [Formula: see text] phase, M[Formula: see text]C6 and Ni3B phases. When the powder feeding speed reached 4 g/min, the upper bainite occurred in the heat affected zone (HAZ). Moreover, the tensile strength of the joint increased, while the yield strength and the ductility decreased.


2001 ◽  
Vol 699 ◽  
Author(s):  
Xiaodong Zou ◽  
Tariq Makram ◽  
Rosario A. Gerhardt

AbstractWaspaloy is a nickel base super-alloy used in aircraft engines. When this alloy is placed in service, it is subjected to long term exposure at high temperatures, which can cause the reinforcing gamma prime precipitate population to fluctuate and thus affect its structural integrity. The population fluctuates as a result of coarsening, dissolution or re-precipitation. Samples exposed to 1200° F for times ranging from 0 to 12626 hours were characterized using impedance spectroscopy, microhardness measurements, x-ray diffraction and quantitative stereology. Two important parameters were derived from the impedance measurements: (1) the imaginary admittance peak magnitude (Ymax) and (2) the associated relaxation frequency (fmax). As the distribution, shape and size of the precipitates change with exposure time, these parameters were also found to vary. In addition to the changes in precipitate geometry, lattice constant changes detected by analyzing x-ray diffraction data suggest that there are compositional shifts in the matrix as well as the gamma prime precipitates. Furthermore, the preferred orientation of the precipitates can also be seen to change with exposure time. These changes in composition, size and shape as a function of thermal exposure time are accompanied by changes in the volume fractions of primary and secondary gamma prime particles present. Using effective medium models, it is possible to predict that the measured properties are related to the gamma prime population. The grain boundary carbides do not appear to play any role at the conditions presented.


Author(s):  
С.Н. Гарибова ◽  
А.И. Исаев ◽  
С.И. Мехтиева ◽  
С.У. Атаева ◽  
Р.И. Алекперов

Specifics of "amorphous state - crystal" phase transitions in dependence on the samples obtaining method and thermal processing, as well as changes in the structure and close range order in the arrangement of the atoms of Ge20Sb20.5Te51 chalcogenide semiconductors have been studied by the x-ray diffraction and Raman spectroscopy. It has been shown that Ge20Sb20.5Te51 films obtained by thermal evaporation on an unheated substrate are amorphous; after heat treatment at 220 and 400 °C, transform into a crystalline phase with a cubic and hexagonal structure. The chemical bonds and the main structural elements that form the matrix of the investigated objects, as well as the changes that occur in them during heat treatment, have been determined.


2021 ◽  
Vol 922 (2) ◽  
pp. 256
Author(s):  
Giulia Perotti ◽  
Henning O. Sørensen ◽  
Henning Haack ◽  
Anja C. Andersen ◽  
Dario Ferreira Sanchez ◽  
...  

Abstract Protoplanetary disks are dust- and gas-rich structures surrounding protostars. Depending on the distance from the protostar, this dust is thermally processed to different degrees and accreted to form bodies of varying chemical compositions. The primordial accretion processes occurring in the early protoplanetary disk such as chondrule formation and metal segregation are not well understood. One way to constrain them is to study the morphology and composition of forsteritic grains from the matrix of carbonaceous chondrites. Here, we present high-resolution ptychographic X-ray nanotomography and multimodal chemical microtomography (X-ray diffraction and X-ray fluorescence) to reveal the early history of forsteritic grains extracted from the matrix of the Murchison CM2.5 chondrite. The 3D electron density maps revealed, at unprecedented resolution (64 nm), spherical inclusions containing Fe–Ni, very little silica-rich glass and void caps (i.e., volumes where the electron density is consistent with conditions close to vacuum) trapped in forsterite. The presence of the voids along with the overall composition, petrological textures, and shrinkage calculations is consistent with the grains experiencing one or more heating events with peak temperatures close to the melting point of forsterite (∼2100 K), and subsequently cooled and contracted, in agreement with chondrule-forming conditions.


2008 ◽  
Vol 569 ◽  
pp. 45-48
Author(s):  
Hai Yun Jin ◽  
Guan Jun Qiao ◽  
Zong Ren Peng ◽  
Ji Qiang Gao

SiC particles coated with nano-BN were synthesized and the machinable SiC/BN ceramic nano-composites were fabricated by Plasma Active Sintering (PAS) in N2 atmosphere. The existing and distribution of h-BN phase were revealed by X-ray diffraction (XRD), and SEM. For the existing of weak interface between h-BN and SiC grains, the machinability of both SiC/BN micro-composites and nano-composites were improved obviously. Because the nano-sized h-BN crystals were homogeneously dispersed around the SiC grains of the matrix, the fracture strength of the nano-composites was better than the SiC/h-BN micro-composite.


2018 ◽  
Vol 37 (1) ◽  
pp. 66-79 ◽  
Author(s):  
Sijun Li ◽  
Ming Lu ◽  
Ruimin Hu ◽  
Tian Tang ◽  
Keru Hou ◽  
...  

To improve dyeing properties of ramie fabrics, sodium hydroxide/urea (NaOH/urea) was used as curcumin solvent and ramie-fiber swelling solvent. Ramie fabrics were dyed with curcumin in NaOH/urea aqueous solution at low temperature without using any mordants. The color depth (K/S) value, washing fastness, ultraviolet–visible spectrophotometry were measured to investigate dyeing properties of the ramie with curcumin in NaOH/urea solution at low temperature. Meanwhile, X-ray diffraction and breaking strength were used to determine the structure of the ramie in NaOH/urea solution. Curcumin could be dissolved completely in NaOH/urea solution, and crystallinity of ramie fiber was decreased a little. The K/S value of dyed ramie fabrics in NaOH/urea solution increased around 4-fold compared to dyed ramie fabrics in water. The dyed ramie fabrics in NaOH/urea solution displayed good washing fastness. In addition, dyed ramie fabrics in NaOH/urea solution revealed anti-ultraviolet properties.


1973 ◽  
Vol 17 ◽  
pp. 106-115 ◽  
Author(s):  
Frank H. Chung

AbstractA unified matrix-flushing theory and its practical applications for quantitative multicomponent analysis by X-ray diffraction are presented.In this method, a fundamental “matrix-flushing” concept is introduced; the calibration curve procedure is shunted; the matrix (absorption) effect is totally eliminated; all components, crystalline or amorphous, can be determined.


MRS Advances ◽  
2019 ◽  
Vol 4 (5-6) ◽  
pp. 277-284
Author(s):  
Nikolay A. Bert ◽  
Vladimir V. Chaldyshev ◽  
Nikolay A. Cherkashin ◽  
Vladimir N. Nevedomskiy ◽  
Valery V. Preobrazhenskii ◽  
...  

ABSTRACTWe studied the microstructure of Al0.28Ga0.72As0.972Sb0.028 metamaterials containing a developed array of AsSb nanoinclusions. The AlGaAsSb films were grown by low-temperature molecular-beam epitaxy followed by high-temperature annealing at 750°C. The process resulted in an array of self-organized AsSb nanonclusions with an average diameter of 15 nm. The volume filling factor was about 0.003. Using transmission electron microscopy and x-ray diffraction we showed that the nanoinclusions have A7-type rhombohedral atomic structure with the following orientation in the matrix (0003)p || {111}m and [-2110]p || 〈220〉m, where p and m indices indicate the AsSb precipitate and AlGaAsSb matrix, correspondingly. The nanoinclusions appeared to be strongly enriched by antimony (more than 90 atomic %), whereas the Sb content in the AlGaAsSb matrix was 2.8 atomic %. The strong enrichment of the inclusion with Sb resulted from the local thermodynamic equilibrium between the solid AlGaAsSb matrix and AsSb inclusions which became liquid at a formation temperature of 750°C.


2019 ◽  
Vol 54 (7) ◽  
pp. 981-997
Author(s):  
Semegn Cheneke ◽  
D Benny Karunakar

In this research, microstructure and mechanical properties of stir rheocast AA2024/TiB2 metal matrix composite have been investigated. The working temperature was 640℃, which was the selected semisolid temperature that corresponds to 40% of the solid fraction. Two weight percentage, 4 wt%, and 6 wt% of the TiB2 reinforcements were added to the matrix. The field emission scanning electron microscope micrographs of the developed composites showed a uniform distribution of the particles in the case of the 2 wt% and 4 wt% of the reinforcements. However, the particles agglomerated as the weight percentages of the reinforcement increases to 6%. The optical microscope of the liquid cast sample showed the dendritic structure, whereas the rheocast samples showed a globular structure. The X-ray diffraction analysis confirmed the distribution of the reinforcements in the matrix and the formation of some intermetallic compounds. Mechanical properties significantly improved by the addition of the reinforcements in the matrix. An increase in tensile strength of 13.3%, 40%, 28%, and 5% was achieved for the unreinforced rheocast sample, 2 wt%, 4 wt%, and 6 wt% reinforced rheocast samples respectively, compared to the liquid cast sample. An increase in 20% of hardness was attained for the composite with 2 wt% TiB2 compared to the liquid cast sample. According to the fractography analysis, small dimples were observed on the fractured surface of the unreinforced rheocast sample, whereas small and large voids were dominant on the fractured surface of the 2 wt% composite, which shows the ductile fracture mode.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 629 ◽  
Author(s):  
Daria Lazurenko ◽  
Andreas Stark ◽  
Maksim Esikov ◽  
Jonathan Paul ◽  
Ivan Bataev ◽  
...  

In this study, new multilayer TiAl-based composites were developed and characterized. The materials were produced by spark plasma sintering (SPS) of elemental Ti and Al foils and ceramic particles (TiB2 and TiC) at 1250 °C. The matrix of the composites consisted of α2-TiAl and γ-TiAl lamellas and reinforcing ceramic layers. Formation of the α2 + γ structure, which occurred via a number of solid–liquid and solid–solid reactions and intermediate phases, was characterized by in situ synchrotron X-ray diffraction analysis. The combination of X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis revealed that an interaction of TiC with Ti and Al led to the formation of a Ti2AlC Mn+1AXn (MAX) phase. No chemical reactions between TiB2 and the matrix elements were observed. The microhardness, compressive strength, and creep behavior of the composites were measured to estimate their mechanical properties. The orientation of the layers with respect to the direction of the load affected the compressive strength and creep behavior of TiC-reinforced composites. The compressive strength of samples loaded in the perpendicular direction to layers was higher; however, the creep resistance was better for composites loaded in the longitudinal direction. The microhardness of the composites correlated with the microhardness of reinforcing components.


Sign in / Sign up

Export Citation Format

Share Document