Sb-rich nanoinclusions in an AlGaAsSb metamaterial

MRS Advances ◽  
2019 ◽  
Vol 4 (5-6) ◽  
pp. 277-284
Author(s):  
Nikolay A. Bert ◽  
Vladimir V. Chaldyshev ◽  
Nikolay A. Cherkashin ◽  
Vladimir N. Nevedomskiy ◽  
Valery V. Preobrazhenskii ◽  
...  

ABSTRACTWe studied the microstructure of Al0.28Ga0.72As0.972Sb0.028 metamaterials containing a developed array of AsSb nanoinclusions. The AlGaAsSb films were grown by low-temperature molecular-beam epitaxy followed by high-temperature annealing at 750°C. The process resulted in an array of self-organized AsSb nanonclusions with an average diameter of 15 nm. The volume filling factor was about 0.003. Using transmission electron microscopy and x-ray diffraction we showed that the nanoinclusions have A7-type rhombohedral atomic structure with the following orientation in the matrix (0003)p || {111}m and [-2110]p || 〈220〉m, where p and m indices indicate the AsSb precipitate and AlGaAsSb matrix, correspondingly. The nanoinclusions appeared to be strongly enriched by antimony (more than 90 atomic %), whereas the Sb content in the AlGaAsSb matrix was 2.8 atomic %. The strong enrichment of the inclusion with Sb resulted from the local thermodynamic equilibrium between the solid AlGaAsSb matrix and AsSb inclusions which became liquid at a formation temperature of 750°C.

2011 ◽  
Vol 306-307 ◽  
pp. 410-415
Author(s):  
Li Sun ◽  
Fu Tian Liu ◽  
Qi Hui Jiang ◽  
Xiu Xiu Chen ◽  
Ping Yang

Core/shell type nanoparticles with an average diameter of 20nm were synthesized by chemical precipitation method. Firstly, Monodisperse Fe3O4 nanoparticles were synthesized by solvethermal method. FeSO4ž7H2O and NaBH4 were respectively dissolved in distilled water, then moderated Fe3O4 particles and surfactant(PVP) were ultrasonic dispersed into the FeSO4ž7H2O solution. The resulting solution was stirred 2 h at room temperature. Fe could be deposited on the surface of monodispersed Fe3O4 nanoparticles to form core-shell particles. The particles were characterized by using various experimental techniques, such as transmission electron microscopy (TEM), X-ray diffraction (XRD), AGM and DTA. The results suggest that the saturation magnetization of the nanocomposites is 100 emu/g. The composition of the samples show monodisperse and the sides of the core/shell nanoparticles are 20-30nm. It is noted that the formation of Fe3O4/Fe nanocomposites magnetite nanoparticles possess superparamagnetic property.


1999 ◽  
Vol 583 ◽  
Author(s):  
Martin Schmidbauer ◽  
Thomas Wiebach ◽  
Helmut Raidt ◽  
Peter Schäfer ◽  
Michael hanke ◽  
...  

AbstractThe strain distribution inside and in the vicinity of coherently strained self-organized islands has been investigated by high-resolution x-ray diffraction (HRXRD). Finite element method (FEM) calculations were carried out in order to calculate the strain field, which was then used to simulate x-ray reciprocal space maps on the basis of kinematical scattering theory. For Si0 75Ge0.25 islands an abrupt increase in the Ge-concentration at about one third of the island height has been found. This behavior can be attributed to different nucleation stages during growth. Highly strained buried CdSe quantum dots (QDs) strongly influence the surrounding ZnSe matrix. From reciprocal space maps and FEM simulations we were able to estimate the shape and size of the islands. The results are in agreement with transmission electron microscopy (TEM) and UHV atomic force microscopy (AFM) data.


2016 ◽  
Vol 16 (4) ◽  
pp. 3744-3748 ◽  
Author(s):  
Yuan Gao ◽  
Yuebo Hu ◽  
Dacheng Zhou ◽  
Jianbei Qiu

Transparent oxyflouride glass ceramics composed of SiO2–Al2O3–Na2O–NaF–YF3 tri-coped with Nd3+/Yb3+/Ho3+ were prepared by thermal treatment. Segregation of NaYF4 nanocrystals in the matrix was confirmed from structural analysis by means of X-ray diffraction and transmission electron microscopy. Compared with glass samples, very strong green upconversion (UC) luminescence due to the Ho3+:(4F5, 5S2)→5I8 transition was observed in the glass ceramics under 808 nm excitation. It was found that upconversion intensity of Ho3+ strongly depends on the Nd3+ concentration, and the energy transfer process from Nd3+ to Ho3+ via Yb3+ was proposed.


2010 ◽  
Vol 25 (10) ◽  
pp. 2035-2041 ◽  
Author(s):  
Zhiguo Xia ◽  
Peng Du

CaF2:Yb3+,Er3+ upconversion (UC) luminescence nanoparticles have been synthesized using mesoporous silica (SBA-15) as a hard template. The samples were characterized by x-ray diffraction, Fourier transform infrared spectra, field-emission scanning electron microscopy, transmission electron microscopy, and UC emission spectra, respectively. Highly crystalline cubic phase CaF2:Yb3+,Er3+ nanoparticles are uniformly distributed with an average diameter of about 40–50 nm, and the formation process is also demonstrated. The UC fluorescence has been realized in the as-prepared CaF2:Yb3+,Er3+ nanoparticles on 980-nm excitation. The UC emission transitions for 4F9/2–4I15/2 (red), 2H11/2–4I15/2 (green), 4S3/2–4I15/2 (green), and 2H9/2–4I15/2 (violet) in the Yb3+/Er3+ codoped CaF2 nanoparticles depending on pumping power and temperature have been discussed. The UC mechanism, especially the origin on the temperature-dependent UC emission intensities ratio between 2H11/2 and 4S3/2 levels, have been proposed.


2008 ◽  
Vol 8 (3) ◽  
pp. 1398-1403 ◽  
Author(s):  
Liqin Liu ◽  
En Ma ◽  
Renfu Li ◽  
Xueyuan Chen

Eu3+:Gd2O3 nanorods were prepared by a hydrothermal method. X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, and Fourier transform-infrared spectroscopy were used to characterize the resulting samples. Emission and excitation spectra were studied using xenon excited spectroscopic experiments at 10 K. Energy transfer from Gd3+ to Eu3+, from the band gap of the host to Eu3+, and from Eu3+ (S6) to Eu3+ (C2) was observed. The energy levels of Eu3+ at the C2 site of cubic Gd2O3 were experimentally determined according to the fluorescence spectra at 10 K, and fit well with the theoretical values. The standard deviation for the optimal fit was 12.9 cm−1. The fluorescent lifetime of 5D0 (2.3 ms at 295 K) was unusually longer than that of the bulk counterparts (0.94 ms), indicating a small filling factor (0.55) for the nanorod volume. However the lifetime of 5D1 was much shorter than that of the bulk counterparts, 65 μs at 10 K, 37 μs at 295 K.


1995 ◽  
Vol 417 ◽  
Author(s):  
F. Peiró ◽  
A. Cornet ◽  
J. C. Ferrer ◽  
J. R. Morante ◽  
G. Halkias ◽  
...  

AbstractTransmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) have been used to analyze the spontaneous appearance of lateral composition modulations in InyAl1−yAs (yIn.≅ 50%) buffer layers of single quantum well structures grown by molecular beam epitaxy on exact and vicinal (100) InP substrates, at growth temperatures in the range of 530°C–580°C. The influence of the growth temperature, substrate misorientation and epilayer mismatch on the InAlAs lateral modulation is discussed. The development of a self-induced quantum-wire like morphology in the In0.53Ga0.47As single quantum wells grown over the modulated buffers is also commented on.


1997 ◽  
Vol 12 (1) ◽  
pp. 161-174 ◽  
Author(s):  
W. Staiger ◽  
A. Michel ◽  
V. Pierron-Bohnes ◽  
N. Hermann ◽  
M. C. Cadeville

We find that the [Ni3.2nmPt1.6nm] × 15 and [Ni3.2nmPt0.8nm] × 15 multilayers are semicoherent and display a columnar morphology. From both the period of the moir’e fringes and the positions of the diffraction peaks in electronic (plan-view and crosssection geometries) and x-ray diffraction patterns, one deduces that the nickel is relaxed (at least in the error bars of all our measurements), whereas the platinum remains slightly strained (≈−1%). The interfaces are sharp; no intermixing takes place giving rise to neat contrasts in transmission electron microscopy (TEM) and to high intensities of the superlattice peaks in the growth direction in both diffraction techniques. The relaxation of the interfacial misfit occurs partially through misfit dislocations, partially through the strain of platinum. A quasiperiodic twinning occurs at the interfaces, the stacking fault which forms the twin being the most often located at the interface Pt/Ni, i.e., when a Pt layer begins to grow on the Ni layer. The simulation of the θ/2θ superlattice peak intensities takes into account the columnar microstructure. It shows that the roughness is predominantly at medium scale with a fluctuation of about 12.5% for Ni layers and negligible for Pt layers.


2016 ◽  
Vol 87 (1) ◽  
pp. 81-90 ◽  
Author(s):  
Vincent Mukwaya ◽  
Weidong Yu ◽  
Rabie AM Asad ◽  
Hajo Yagoub

Cellulose nano fibrils (CNFs) were isolated from banana rachis bran using enzyme hydrolysis with subsequent ultra-sonic treatment. The CNFs and bran were characterized by particle size distribution (only the CNFs), X-ray diffraction (XRD), Thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy; the morphology of the banana rachis fiber and CNFs was observed using scanning electron microscopy and transmission electron microscopy, respectively. The furnished nano fibrils had an average diameter of 14.02 ± 2.10 nm and length of 619.6 ± 90.7 nm. The aspect ratio of the CNFs is in the range of long fibrils, that is 44.18. XRD studies revealed that CNFs (48.83%) were more crystalline than the banana bran (27.76%). TGA and derivative thermogravimetry thermograms showed that CNFs were more thermally stable than the bran.


2017 ◽  
Vol 65 (1) ◽  
pp. 79-84
Author(s):  
P. Sarmphim ◽  
S. Soontaranon ◽  
C. Sirisathitkul ◽  
P. Harding ◽  
S. Kijamnajsuk ◽  
...  

Abstract Annealed iron-platinum (FePt) is ferromagnetic in a nanoscale regime which is necessary for energy and data storage, whereas the as-synthesized form of FePt-based nanoparticles exhibits superparamagnetism useful for biomedical applications. In this study, as-synthesized nanosuspensions from the reaction of Pt(acac)2 with Fe(acac)3 and Fe(hfac)3 are compared. X-ray diffraction (XRD) peaks for both samples are assigned to the FePt3 phase. As shown by transmission electron microscopy (TEM) and small angle X-ray scattering (SAXS), nanoparticles synthesized by using Fe(acac)3 have a smaller average diameter, but larger polydispersity index and particle agglomerations. On the other hand, the nanoparticles synthesized by using Fe(hfac)3 can self-assemble into a longer range of patterned monolayer. Dynamic light scattering (DLS), measuring the size of cluster of nanoparticles as well as oleic acid and oleylamine at their surface, confirms that larger agglomerations in the sample were synthesized by using Fe(acac)3. In addition to the size distribution, magnetic properties were influenced by the composition of these nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document