scholarly journals Chromosomal and mitochondrial DNA variation in four laboratory populations of collared lemmings (Dicrostonyx)

1993 ◽  
Vol 71 (1) ◽  
pp. 42-48 ◽  
Author(s):  
Mark D. Engstrom ◽  
Allan J. Baker ◽  
Judith L. Eger ◽  
Rudy Boonstra ◽  
Ronald J. Brooks

Genetic differentiation among populations and speciation in Dicrostonyx is hypothesized to have resulted from either allopatric divergence in glacial refugia during the Wisconsin or sympatric processes uncorrelated with refugial isolation. We examined chromosomal and mitochondrial DNA variation in four laboratory colonies, representing three species, in a preliminary evaluation of these hypotheses. Chromosomal variation is extensive among populations, diploid numbers ranging from 38 to 50. Autosomal variation appears to be due primarily to Robertsonian rearrangements and additions of supernumerary chromosomes, and is geographically unpatterned. Sex chromosome morphology is geographically structured and correlated with proposed southern and northern refugia. Restriction fragment analysis of mitochondrial DNA revealed two ancient, divergent genotypic assemblages, corresponding to geographic distributions of sex chromosomes. Autosomal variation, and any resulting reproductive isolation, probably is recent and uncorrelated with refugial history, whereas divergence of sex chromosomes and disparate mitochondrial assemblages likely predate the Wisconsin.

1989 ◽  
Vol 46 (12) ◽  
pp. 2074-2084 ◽  
Author(s):  
Robert D. Ward ◽  
Neil Billington ◽  
Paul D. N. Hebert

Twelve populations of walleye (Stizostedion vitreum) from the Great Lakes and three populations from northern Manitoba were screened for allozyme and mitochondrial DNA (mtDNA) variation. Nine enzyme loci known to show genetic variation were screened in all fish: five of them (Prot-4, Prot-2, Mdh-3, Idh-1, Adh) showed appreciable polymorphism. MtDNA was examined in all fish using six endonucleases that detected polymorphic sites and a further 13 endonucleases that detected only monomorphic sites. Only one of the allozyme loci (Prot-4) showed evidence of geographic patterning of allele frequencies. By contrast, the mtDNA haplotypes showed clear geographic variation. The proportion of total genetic diversity attributable to population differentiation (Gst) was three to five times greater for mtDNA than for the allozymes. Gst values for organelle genes are expected on theoretical grounds to be greater than for nuclear genes, and this expected difference may be enhanced in walleye because of the likelihood that, in this species, male-mediated gene flow exceeds that of females. The distributions of mtDNA haplotypes and estimated divergence times are consistent with the derivation of extant walleye populations from three different glacial refugia.


1997 ◽  
Vol 54 (7) ◽  
pp. 1450-1460 ◽  
Author(s):  
M H Murdoch ◽  
P DN Hebert

Restriction fragment length polymorphisms were used to survey the mitochondrial genome of Ameiurus nebulosus for nucleotide sequence variation. Two hundred and forty-nine individuals were analyzed from 12 populations across the Great Lakes drainage and 3 populations in possible refugial drainages. Fifteen restriction endonucleases revealed 50 distinct haplotypes among these fish. Two major phylogenetic assemblages, A and B, were revealed with an average 3.22% sequence divergence. Both assemblages were themselves fragmented into two groups. Strong geographic patterning was observed in the frequency of assemblages and groups across the sampling area: assemblage A was predominant in fish from populations east of Lake Erie, while western populations were dominated by assemblage B. The distribution and phylogenetic divergence of mitochondrial haplotypes indicate that brown bullhead in the Great Lakes originated from two Pleistocene refugia and further provides genetic evidence of subdivision within these refugia. Pleistocene glaciations appear to have had a similar influence on the geographic distribution of mitochondrial DNA lineages of other North American fishes. In contrast with these other species, however, much of the mitochondrial DNA variation and divergence was retained in brown bullhead populations living south of the ice sheets and is represented in extant populations.


Genetica ◽  
1993 ◽  
Vol 92 (1) ◽  
pp. 67-74 ◽  
Author(s):  
J. M. Larruga ◽  
J. Rozas ◽  
M. Hern�ndez ◽  
A. M. Gonz�lez ◽  
V. M. Cabrera

2012 ◽  
Vol 8 (4) ◽  
pp. 636-638 ◽  
Author(s):  
Joanna Rutkowska ◽  
Malgorzata Lagisz ◽  
Shinichi Nakagawa

The well-established view of the evolution of sex chromosome dimorphism is of a gradual genetic and morphological degeneration of the hemizygous chromosome. Yet, no large-scale comparative analysis exists to support this view. Here, we analysed karyotypes of 200 bird species to test whether the supposed directional changes occur in bird sex chromosomes. We found no support for the view that W chromosomes gradually become smaller over evolutionary time. On the contrary, the length of the W chromosome can fluctuate over short time scales, probably involving both shortening and elongation of non-coding regions. Recent discoveries of near-identical palindromes and neo-sex chromosomes in birds may also contribute to the observed variation. Further studies are now needed to investigate how chromosome morphology relates to its gene content, and whether the changes in size were driven by selection.


2020 ◽  
Vol 12 (4) ◽  
pp. 243-258 ◽  
Author(s):  
Wen-Juan Ma ◽  
Fantin Carpentier ◽  
Tatiana Giraud ◽  
Michael E Hood

Abstract Degenerative mutations in non-recombining regions, such as in sex chromosomes, may lead to differential expression between alleles if mutations occur stochastically in one or the other allele. Reduced allelic expression due to degeneration has indeed been suggested to occur in various sex-chromosome systems. However, whether an association occurs between specific signatures of degeneration and differential expression between alleles has not been extensively tested, and sexual antagonism can also cause differential expression on sex chromosomes. The anther-smut fungus Microbotryum lychnidis-dioicae is ideal for testing associations between specific degenerative signatures and differential expression because 1) there are multiple evolutionary strata on the mating-type chromosomes, reflecting successive recombination suppression linked to mating-type loci; 2) separate haploid cultures of opposite mating types help identify differential expression between alleles; and 3) there is no sexual antagonism as a confounding factor accounting for differential expression. We found that differentially expressed genes were enriched in the four oldest evolutionary strata compared with other genomic compartments, and that, within compartments, several signatures of sequence degeneration were greater for differentially expressed than non-differentially expressed genes. Two particular degenerative signatures were significantly associated with lower expression levels within differentially expressed allele pairs: upstream insertion of transposable elements and mutations truncating the protein length. Other degenerative mutations associated with differential expression included nonsynonymous substitutions and altered intron or GC content. The association between differential expression and allele degeneration is relevant for a broad range of taxa where mating compatibility or sex is determined by genes located in large regions where recombination is suppressed.


2021 ◽  
pp. 1-9
Author(s):  
Chiao Kuwana ◽  
Hiroyuki Fujita ◽  
Masataka Tagami ◽  
Takanori Matsuo ◽  
Ikuo Miura

The sex chromosomes of most anuran amphibians are characterized by homomorphy in both sexes, and evolution to heteromorphy rarely occurs at the species or geographic population level. Here, we report sex chromosome heteromorphy in geographic populations of the Japanese Tago’s brown frog complex (2n = 26), comprising Rana sakuraii and R. tagoi. The sex chromosomes of R. sakuraii from the populations in western Japan were homomorphic in both sexes, whereas chromosome 7 from the populations in eastern Japan were heteromorphic in males. Chromosome 7 of R. tagoi, which is distributed close to R. sakuraii in eastern Japan, was highly similar in morphology to the Y chromosome of R. sakuraii. Based on this and on mitochondrial gene sequence analysis, we hypothesize that in the R. sakuraii populations from eastern Japan the XY heteromorphic sex chromosome system was established by the introduction of chromosome 7 from R. tagoi via interspecies hybridization. In contrast, chromosome 13 of R. tagoi from the 2 large islands in western Japan, Shikoku and Kyushu, showed a heteromorphic pattern of constitutive heterochromatin distribution in males, while this pattern was homomorphic in females. Our study reveals that sex chromosome heteromorphy evolved independently at the geographic lineage level in this species complex.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yisrael Rappaport ◽  
Hanna Achache ◽  
Roni Falk ◽  
Omer Murik ◽  
Oren Ram ◽  
...  

AbstractDuring meiosis, gene expression is silenced in aberrantly unsynapsed chromatin and in heterogametic sex chromosomes. Initiation of sex chromosome silencing is disrupted in meiocytes with sex chromosome-autosome translocations. To determine whether this is due to aberrant synapsis or loss of continuity of sex chromosomes, we engineered Caenorhabditis elegans nematodes with non-translocated, bisected X chromosomes. In early meiocytes of mutant males and hermaphrodites, X segments are enriched with euchromatin assembly markers and active RNA polymerase II staining, indicating active transcription. Analysis of RNA-seq data showed that genes from the X chromosome are upregulated in gonads of mutant worms. Contrary to previous models, which predicted that any unsynapsed chromatin is silenced during meiosis, our data indicate that unsynapsed X segments are transcribed. Therefore, our results suggest that sex chromosome chromatin has a unique character that facilitates its meiotic expression when its continuity is lost, regardless of whether or not it is synapsed.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 483
Author(s):  
Wen-Juan Ma ◽  
Paris Veltsos

Frogs are ideal organisms for studying sex chromosome evolution because of their diversity in sex chromosome differentiation and sex-determination systems. We review 222 anuran frogs, spanning ~220 Myr of divergence, with characterized sex chromosomes, and discuss their evolution, phylogenetic distribution and transitions between homomorphic and heteromorphic states, as well as between sex-determination systems. Most (~75%) anurans have homomorphic sex chromosomes, with XY systems being three times more common than ZW systems. Most remaining anurans (~25%) have heteromorphic sex chromosomes, with XY and ZW systems almost equally represented. There are Y-autosome fusions in 11 species, and no W-/Z-/X-autosome fusions are known. The phylogeny represents at least 19 transitions between sex-determination systems and at least 16 cases of independent evolution of heteromorphic sex chromosomes from homomorphy, the likely ancestral state. Five lineages mostly have heteromorphic sex chromosomes, which might have evolved due to demographic and sexual selection attributes of those lineages. Males do not recombine over most of their genome, regardless of which is the heterogametic sex. Nevertheless, telomere-restricted recombination between ZW chromosomes has evolved at least once. More comparative genomic studies are needed to understand the evolutionary trajectories of sex chromosomes among frog lineages, especially in the ZW systems.


Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 661
Author(s):  
Ikuo Miura ◽  
Foyez Shams ◽  
Si-Min Lin ◽  
Marcelo de Bello Cioffi ◽  
Thomas Liehr ◽  
...  

Translocation between sex-chromosomes and autosomes generates multiple sex-chromosome systems. It happens unexpectedly, and therefore, the evolutionary meaning is not clear. The current study shows a multiple sex chromosome system comprising three different chromosome pairs in a Taiwanese brown frog (Odorrana swinhoana). The male-specific three translocations created a system of six sex-chromosomes, ♂X1Y1X2Y2X3Y3 -♀X1X1X2X2X3X3. It is unique in that the translocations occurred among three out of the six members of potential sex-determining chromosomes, which are known to be involved in sex-chromosome turnover in frogs, and the two out of three include orthologs of the sex-determining genes in mammals, birds and fishes. This rare case suggests sex-specific, nonrandom translocations and thus provides a new viewpoint for the evolutionary meaning of the multiple sex chromosome system.


Cells ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 4
Author(s):  
Rafael Kretschmer ◽  
Ricardo José Gunski ◽  
Analía del Valle Garnero ◽  
Thales Renato Ochotorena de Freitas ◽  
Gustavo Akira Toma ◽  
...  

Although cytogenetics studies in cuckoos (Aves, Cuculiformes) have demonstrated an interesting karyotype variation, such as variations in the chromosome morphology and diploid number, their chromosome organization and evolution, and relation with other birds are poorly understood. Hence, we combined conventional and molecular cytogenetic approaches to investigate chromosome homologies between chicken and the smooth-billed ani (Crotophaga ani). Our results demonstrate extensive chromosome reorganization in C. ani, with interchromosomal rearrangements involving macro and microchromosomes. Intrachromosomal rearrangements were observed in some macrochromosomes, including the Z chromosome. The most evolutionary notable finding was a Robertsonian translocation between the microchromosome 17 and the Z chromosome, a rare event in birds. Additionally, the simple short repeats (SSRs) tested here were preferentially accumulated in the microchromosomes and in the Z and W chromosomes, showing no relationship with the constitutive heterochromatin regions, except in the W chromosome. Taken together, our results suggest that the avian sex chromosome is more complex than previously postulated and revealed the role of microchromosomes in the avian sex chromosome evolution, especially cuckoos.


Sign in / Sign up

Export Citation Format

Share Document