scholarly journals Choice of damping coefficient in Langevin dynamics

2021 ◽  
Vol 94 (9) ◽  
Author(s):  
Robert D. Skeel ◽  
Carsten Hartmann

Abstract This article considers the application of Langevin dynamics to sampling and investigates how to choose the damping parameter in Langevin dynamics for the purpose of maximizing thoroughness of sampling. Also, it considers the computation of measures of sampling thoroughness. Graphic abstract

2021 ◽  
pp. 107754632110105
Author(s):  
Subhajit Das ◽  
Subhajit Mondal ◽  
Shyamal Guchhait

A complex eigenvector is a result of nonproportional damping present in a structural system. However, it is difficult to identify the accurate damping matrix considering the modal sparsity and coordinate sparsity. A nonproportional viscous damping parameter identification is formulated as an unconstrained optimization problem in the present study. The damping coefficient of each element is considered as the design variable for the optimization problem. The objective function is defined using the incomplete complex eigenvectors, which are generated because of the presence of external damping devices in the structure. This objective function is then minimized using standard particle swarm optimization to identify the damping coefficient of the damping matrix. The accuracy and efficiency of the particle swarm optimization are investigated by solving a few numerical problems with simulated measured data. The proposed method works well with the incomplete measured modal data. The current methodology performs satisfactorily with and without noisy data. A comparison study is performed with the existing gradient-based method, and the results show that the proposed method performs better than the existing gradient-based method for the present problem with and without noisy measurement data.


2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


1984 ◽  
Vol 12 (1) ◽  
pp. 44-63 ◽  
Author(s):  
Y. D. Kwon ◽  
D. C. Prevorsek

Abstract Radial tires for automobiles were subjected to high speed rolling under load on a testing wheel to determine the critical speeds at which standing waves started to form. Tires of different makes had significantly different critical speeds. The damping coefficient and mass per unit length of the tire wall were measured and a correlation between these properties and the observed critical speed of standing wave formation was sought through use of a circular membrane model. As expected from the model, desirably high critical speed calls for a high damping coefficient and a low mass per unit length of the tire wall. The damping coefficient is particularly important. Surprisingly, those tire walls that were reinforced with steel cord had higher damping coefficients than did those reinforced with polymeric cord. Although the individual steel filaments are elastic, the interfilament friction is higher in the steel cords than in the polymeric cords. A steel-reinforced tire wall also has a higher density per unit length. The damping coefficient is directly related to the mechanical loss in cyclic deformation and, hence, to the rolling resistance of a tire. The study shows that, in principle, it is more difficult to design a tire that is both fuel-efficient and free from standing waves when steel cord is used than when polymeric cords are used.


Shore & Beach ◽  
2019 ◽  
pp. 29-35
Author(s):  
Michele Strazzella ◽  
Nobuhisa Kobayashu ◽  
Tingting Zhu

A simple approach based on an analytical model and available tide gauge data is proposed for the analysis of storm tide damping inside inland bays with complex bathymetry and for the prediction of peak water levels at gauge locations during storms. The approach was applied to eight tide gauges in the vicinity of inland bays in Delaware. Peak water levels at the gauge locations were analyzed for 34 storms during 2005-2017. A damping parameter in the analytical model was calibrated for each bay gauge. The calibrated model predicted the peak water levels within errors of about 0.2 m except for Hurricane Sandy in 2012. The analytical model including wave overtopping was used to estimate the peak wave overtopping rate over the barrier beach from the measured peak water level in the adjacent bay.


2019 ◽  
Vol 56 (6) ◽  
pp. 550-558
Author(s):  
Woo-Seok Jin ◽  
Yong-Ho Kim ◽  
Jun-Ho Jung ◽  
Kwangkook Lee ◽  
Dong-Hun Kim

Author(s):  
Olle Eriksson ◽  
Anders Bergman ◽  
Lars Bergqvist ◽  
Johan Hellsvik

In the previous chapters we described the basic principles of density functional theory, gave examples of how accurate it is to describe static magnetic properties in general, and derived from this basis the master equation for atomistic spin-dynamics; the SLL (or SLLG) equation. However, one term was not described in these chapters, namely the damping parameter. This parameter is a crucial one in the SLL (or SLLG) equation, since it allows for energy and angular momentum to dissipate from the simulation cell. The damping parameter can be evaluated from density functional theory, and the Kohn-Sham equation, and it is possible to determine its value experimentally. This chapter covers in detail the theoretical aspects of how to calculate theoretically the damping parameter. Chapter 8 is focused, among other things, on the experimental detection of the damping, using ferromagnetic resonance.


Soft Matter ◽  
2020 ◽  
Author(s):  
Fei Tan ◽  
Ying Chen ◽  
Nanrong Zhao

Polymer translocation in complex environments is crucially important to many biological processes in life. In the present work, we adopted two-dimensional Langevin dynamics simulation to study the forced and unbiased...


Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1229
Author(s):  
Andrii Vovk ◽  
Sergey A. Bunyaev ◽  
Pavel Štrichovanec ◽  
Nikolay R. Vovk ◽  
Bogdan Postolnyi ◽  
...  

Thin polycrystalline Co2FeGe films with composition close to stoichiometry have been fabricated using magnetron co-sputtering technique. Effects of substrate temperature (TS) and post-deposition annealing (Ta) on structure, static and dynamic magnetic properties were systematically studied. It is shown that elevated TS (Ta) promote formation of ordered L21 crystal structure. Variation of TS (Ta) allow modification of magnetic properties in a broad range. Saturation magnetization ~920 emu/cm3 and low magnetization damping parameter α ~ 0.004 were achieved for TS = 573 K. This in combination with soft ferromagnetic properties (coercivity below 6 Oe) makes the films attractive candidates for spin-transfer torque and magnonic devices.


Sign in / Sign up

Export Citation Format

Share Document