scholarly journals Comparing traditional and deep-learning techniques of kinematic reconstruction for polarization discrimination in vector boson scattering

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
M. Grossi ◽  
J. Novak ◽  
B. Kerševan ◽  
D. Rebuzzi

AbstractMeasuring longitudinally polarized vector boson scattering in $$\mathrm {WW}$$ WW channel is a promising way to investigate unitarity restoration with the Higgs mechanism and to search for possible physics beyond the Standard Model. In order to perform such a measurement, it is crucial to develop an efficient reconstruction of the full $$\mathrm {W}$$ W boson kinematics in leptonic decays with the focus on polarization measurements. We investigated several approaches, from traditional ones up to advanced deep neural network structures, and we compared their abilities in reconstructing the $$\mathrm {W}$$ W boson reference frame and in consequently measuring the longitudinal fraction $$\mathrm {W}_{\text {L}}$$ W L in both semi-leptonic and fully-leptonic $$\mathrm {WW}$$ WW decay channels.

Recently, DDoS attacks is the most significant threat in network security. Both industry and academia are currently debating how to detect and protect against DDoS attacks. Many studies are provided to detect these types of attacks. Deep learning techniques are the most suitable and efficient algorithm for categorizing normal and attack data. Hence, a deep neural network approach is proposed in this study to mitigate DDoS attacks effectively. We used a deep learning neural network to identify and classify traffic as benign or one of four different DDoS attacks. We will concentrate on four different DDoS types: Slowloris, Slowhttptest, DDoS Hulk, and GoldenEye. The rest of the paper is organized as follow: Firstly, we introduce the work, Section 2 defines the related works, Section 3 presents the problem statement, Section 4 describes the proposed methodology, Section 5 illustrate the results of the proposed methodology and shows how the proposed methodology outperforms state-of-the-art work and finally Section VI concludes the paper.


2020 ◽  
Author(s):  
Hamid Hassanpour

This is a paper regarding application of deep neural network in prediction of Forex market. It utilized advanced deep learning techniques and software package in order ti evaluate capability of deep neural network in market behavior prediction.


2020 ◽  
Vol 8 (2) ◽  
Author(s):  
Maximilian Ruhdorfer ◽  
Ennio Salvioni ◽  
Andreas Weiler

We study for the first time the collider reach on the derivative Higgs portal, the leading effective interaction that couples a pseudo Nambu-Goldstone boson (pNGB) scalar Dark Matter to the Standard Model. We focus on Dark Matter pair production through an off-shell Higgs boson, which is analyzed in the vector boson fusion channel. A variety of future high-energy lepton colliders as well as hadron colliders are considered, including CLIC, a muon collider, the High-Luminosity and High-Energy versions of the LHC, and FCC-hh. Implications on the parameter space of pNGB Dark Matter are discussed. In addition, we give improved and extended results for the collider reach on the marginal Higgs portal, under the assumption that the new scalars escape the detector, as motivated by a variety of beyond the Standard Model scenarios.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 15
Author(s):  
Manuel Gil-Martín ◽  
Marcos Sánchez-Hernández ◽  
Rubén San-Segundo

Deep learning techniques are being widely applied to Human Activity Recognition (HAR). This paper describes the implementation and evaluation of a HAR system for daily life activities using the accelerometer of an iPhone 6S. This system is based on a deep neural network including convolutional layers for feature extraction from accelerations and fully-connected layers for classification. Different transformations have been applied to the acceleration signals in order to find the appropriate input data to the deep neural network. This study has used acceleration recordings from the MotionSense dataset, where 24 subjects performed 6 activities: walking downstairs, walking upstairs, sitting, standing, walking and jogging. The evaluation has been performed using a subject-wise cross-validation: recordings from the same subject do not appear in training and testing sets at the same time. The proposed system has obtained a 9% improvement in accuracy compared to the baseline system based on Support Vector Machines. The best results have been obtained using raw data as input to a deep neural network composed of two convolutional and two max-pooling layers with decreasing kernel sizes. Results suggest that using the module of the Fourier transform as inputs provides better results when classifying only between dynamic activities.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6842 ◽  
Author(s):  
Javier Arellano-Verdejo ◽  
Hugo E. Lazcano-Hernandez ◽  
Nancy Cabanillas-Terán

Recently, Caribbean coasts have experienced atypical massive arrivals of pelagic Sargassum with negative consequences both ecologically and economically. Based on deep learning techniques, this study proposes a novel algorithm for floating and accumulated pelagic Sargassum detection along the coastline of Quintana Roo, Mexico. Using convolutional and recurrent neural networks architectures, a deep neural network (named ERISNet) was designed specifically to detect these macroalgae along the coastline through remote sensing support. A new dataset which includes pixel values with and without Sargassum was built to train and test ERISNet. Aqua-MODIS imagery was used to build the dataset. After the learning process, the designed algorithm achieves a 90% of probability in its classification skills. ERISNet provides a novel insight to detect accurately algal blooms arrivals.


2021 ◽  
Author(s):  
Sara Saleh Alfozan ◽  
Mohamad Mahdi Hassan

Infection of agricultural plants is a serious threat to food safety. It can severely damage plants' yielding capacity. Farmers are the primary victims of this threat. Due to the advancement of AI, image-based intelligent apps can play a vital role in mitigating this threat by quick and early detection of plants infections. In this paper, we present a mobile app in this regard. We have developed MajraDoc to detect some common diseases in local agricultural plants. We have created a dataset of 10886 images for ten classes of plants diseases to train the deep neural network. The VGG-19 network model was modified and trained using transfer learning techniques. The model achieved high accuracy, and the application performed well in predicting all ten classes of infections.


2020 ◽  
Vol 18 ◽  
pp. 110-142
Author(s):  
Abdeljalil Habjia

In the context of particle physics, within the ATLAS and CMS experiments at large hadron collider (LHC), this work presents the discussion of the discovery of a particle compatible with the Higgs boson by the combination of several decay channels, with a mass of the order of 125.5 GeV. With increased statistics, that is the full set of data collected by the ATLAS and CMS experiments at LHC ( s1/2 = 7GeV and s1/2 = 8GeV ), the particle is also discovered individually in the channel h-->γγ with an observed significance of 5.2σ and 4.7σ, respectively. The analysis dedicated to the measurement of the mass mh and signal strength μ which is defined as the ratio of σ(pp --> h) X Br(h-->X) normalized to its Standard Model where X = WW*; ZZ*; γγ ; gg; ff. The combined results in h-->γγ channel gave the measurements: mh = 125:36 ± 0:37Gev, (μ = 1:17 ± 0:3) and the constraint on the width Γ(h) of the Higgs decay of 4.07 MeV at 95%CL. The spin study rejects the hypothesis of spin 2 at 99 %CL. The odd parity (spin parity 0- state) is excluded at more than 98%CL. Within the theoretical and experimental uncertainties accessible at the time of the analysis, all results: channels showing the excess with respect to the background-only hypothesis, measured mass and signal strength, couplings, quantum numbers (JPC), production modes, total and differential cross-sections, are compatible with the Standard Model Higgs boson at 95%CL. Although the Standard Model is one of the theories that have experienced the greatest number of successes to date, it is imperfect. The inability of this model to describe certain phenomena seems to suggest that it is only an approximation of a more general theory. Models beyond the Standard Model, such as 2HDM, MSSM or NMSSM, can compensate some of its limitations and postulate the existence of additional Higgs bosons.


Author(s):  
Thang

In this research, we propose a method of human robot interactive intention prediction. The proposed algorithm makes use of a OpenPose library and a Long-short term memory deep learning neural network. The neural network observes the human posture in a time series, then predicts the human interactive intention. We train the deep neural network using dataset generated by us. The experimental results show that, our proposed method is able to predict the human robot interactive intention, providing 92% the accuracy on the testing set.


Sign in / Sign up

Export Citation Format

Share Document