scholarly journals The impact of top-quark modelling on the exclusion limits in $$\varvec{t{\bar{t}}}+\text {DM}$$ searches at the LHC

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
J. Hermann ◽  
M. Worek

AbstractNew Physics searches at the LHC rely very heavily on the precision and accuracy of Standard Model background predictions. Applying the spin-0 s-channel mediator model, we assess the importance of properly modelling such backgrounds in $$t{\bar{t}}$$ t t ¯ associated Dark Matter production. Specifically, we discuss higher-order corrections and off-shell effects for the two dominant background processes $$t{\bar{t}}$$ t t ¯ and $$t{\bar{t}}Z$$ t t ¯ Z in the presence of extremely exclusive cuts. Exclusion limits are calculated for state-of-the-art NLO full off-shell $$t{\bar{t}}$$ t t ¯ and $$t{\bar{t}}Z$$ t t ¯ Z predictions and compared to those computed with backgrounds in the NWA and / or at LO. We perform the same comparison for several new-physics sensitive observables and evaluate which of them are affected by the top-quark modelling. Additionally, we make suggestions as to which observables should be used to obtain the most stringent limits assuming integrated luminosities of 300 fb$$^{-1}$$ - 1 and 3000 fb$$^{-1}$$ - 1 .

2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Giuseppe Bevilacqua ◽  
Huan-Yu Bi ◽  
Heribertus Bayu Hartanto ◽  
Manfred Kraus ◽  
Jasmina Nasufi ◽  
...  

AbstractRecent discrepancies between theoretical predictions and experimental data in multi-lepton plus b-jets analyses for the $$t{\bar{t}}W^\pm $$ t t ¯ W ± process, as reported by the ATLAS collaboration, have indicated that more accurate theoretical predictions and high precision observables are needed to constrain numerous new physics scenarios in this channel. To this end we employ NLO QCD computations with full off-shell top quark effects included to provide theoretical predictions for the $$\mathcal{R}= \sigma _{t{\bar{t}}W^+}/\sigma _{t{\bar{t}}W^-}$$ R = σ t t ¯ W + / σ t t ¯ W - cross section ratio at the LHC with $$\sqrt{s}=13$$ s = 13 TeV. Depending on the transverse momentum cut on the b-jet we obtain 2–3% theoretical precision on $$\mathcal{R}$$ R , which should help to shed some light on new physics effects that can reveal themselves only once sufficiently precise Standard Model theoretical predictions are available. Furthermore, triggered by these discrepancies we reexamine the charge asymmetry of the top quark and its decay products in the $$t{\bar{t}}W^\pm $$ t t ¯ W ± production process. In the case of charge asymmetries, that are uniquely sensitive to the chiral nature of possible new physics in this channel, theoretical uncertainties below 15% are obtained. Additionally, the impact of the top quark decay modelling is scrutinised by explicit comparison with predictions in the narrow-width approximation.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Giovanni Banelli ◽  
Ennio Salvioni ◽  
Javi Serra ◽  
Tobias Theil ◽  
Andreas Weiler

Abstract We study the phenomenology of a strongly-interacting top quark at future hadron and lepton colliders, showing that the characteristic four-top contact operators give rise to the most significant effects. We demonstrate the extraordinary potential of a 100 TeV proton-proton collider to directly test such non-standard interactions in four-top production, a process that we thoroughly analyze in the same-sign dilepton and trilepton channels, and explore in the fully hadronic channel. Furthermore, high-energy electron-positron colliders, such as CLIC or the ILC, are shown to exhibit an indirect yet remarkable sensitivity to four-top operators, since these constitute, via renormalization group evolution, the leading new-physics deformations in top-quark pair production. We investigate the impact of our results on the parameter space of composite Higgs models with a strongly-coupled (right-handed) top quark, finding that four-top probes provide the best sensitivity on the compositeness scale at the future energy frontier. In addition, we investigate mild yet persisting LHC excesses in multilepton plus jets final states, showing that they can be consistently described in the effective field theory of such a new-physics scenario.


Author(s):  
M. Cermeño ◽  
M. Ángeles Pérez-García ◽  
Joseph Silk

AbstractDark Matter constitutes most of the matter in the presently accepted cosmological model for our Universe. The extreme conditions of ordinary baryonic matter, namely high density and compactness, in Neutron Stars make these objects suitable to gravitationally accrete such a massive component provided interaction strength between both, luminous and dark sectors, at current experimental level of sensitivity. We consider several different DM phenomenological models from the myriad of those presently allowed. In this contribution, we review astrophysical aspects of interest in the interplay of ordinary matter and a fermionic light Dark Matter component. We focus in the interior nuclear medium in the core and external layers, i.e. the crust, discussing the impact of a novel dark sector in relevant stellar quantities for (heat) energy transport such as thermal conductivity or emissivities.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Giuseppe Bevilacqua ◽  
Huan-Yu Bi ◽  
Heribertus Bayu Hartanto ◽  
Manfred Kraus ◽  
Michele Lupattelli ◽  
...  

Abstract We report on the calculation of the next-to-leading order QCD corrections to the production of a $$ t\overline{t} $$ t t ¯ pair in association with two heavy-flavour jets. We concentrate on the di-lepton $$ t\overline{t} $$ t t ¯ decay channel at the LHC with $$ \sqrt{s} $$ s = 13 TeV. The computation is based on pp → e+νeμ−$$ \overline{\nu} $$ ν ¯ μ$$ b\overline{b}b\overline{b} $$ b b ¯ b b ¯ matrix elements and includes all resonant and non-resonant diagrams, interferences and off-shell effects of the top quark and the W gauge boson. As it is customary for such studies, results are presented in the form of inclusive and differential fiducial cross sections. We extensively investigate the dependence of our results upon variation of renormalisation and factorisation scales and parton distribution functions in the quest for an accurate estimate of the theoretical uncertainties. We additionally study the impact of the contributions induced by the bottom-quark parton density. Results presented here are particularly relevant for measurements of $$ t\overline{t}H $$ t t ¯ H (H → $$ b\overline{b} $$ b b ¯ ) and the determination of the Higgs coupling to the top quark. In addition, they might be used for precise measurements of the top-quark fiducial cross sections and to investigate top-quark decay modelling at the LHC.


2009 ◽  
Vol 5 (S267) ◽  
pp. 411-420
Author(s):  
Rachel S. Somerville

AbstractI describe ways in which state-of-the-art cosmological simulations are modeling the growth and evolution of supermassive black holes (feeding), and the impact of the energy that they release on galaxies and their surroundings (feedback). I then discuss how this new picture of interconnected co-evolution of galaxies and black holes provides plausible explanations for several of the mysteries that have long vexed theorists studying galaxy formation within the hierarchical cold dark matter paradigm.


2020 ◽  
Author(s):  
Andrei B. Aleksandrov ◽  
Aigerim B. Dashkina ◽  
Nina S. Konovalova ◽  
Natal'ya M. Okat'eva ◽  
Natal'ya G. Polukhina ◽  
...  

2020 ◽  
Vol 16 (6) ◽  
pp. 752-762
Author(s):  
Vivek Nalawade ◽  
Vaibhav A. Dixit ◽  
Amisha Vora ◽  
Himashu Zade

Background: Food and herbal extracts rich in Quercetin (QRT) are often self-medicated by diabetics and can potentially alter the pharmacokinetics (PK) of Metformin HCl (MET) and Canagliflozin (CNG) leading to food or herb-drug interactions and reduced therapeutic efficacy. However, the impact of these flavonoids on the pharmacokinetic behaviour of MET and CNG is mostly unknown. Methods: A simple one-step protein precipitation method was developed for the determination of MET and CNG from rat plasma. The mobile phase chosen was MeOH 65% and 35% water containing 0.1% formic acid at a flow rate of 1mL/min. Results: The retention time of MET, internal standard (Valsartan) and CNG was 1.83, 6.2 and 8.2 min, respectively. The method was found to be linear in the range of 200 - 8000 ng/mL for CNG and 100 = 4000 ng/ml for MET. Precision and accuracy of the method were below 20% at LLOQ and below 15% for LQC, MQC, and HQC. Conclusion: The method was successfully applied for the determination of PK of MET and CNG by using 100 μL of rat plasma. QRT co-administration affects the PK parameters of MET and CNG. This alteration in PK parameters might be of significant use for clinicians and patients.


Author(s):  
Kun Ting Eddie Chua ◽  
Karia Dibert ◽  
Mark Vogelsberger ◽  
Jesús Zavala

Abstract We study the effects of inelastic dark matter self-interactions on the internal structure of a simulated Milky Way (MW)-size halo. Self-interacting dark matter (SIDM) is an alternative to collisionless cold dark matter (CDM) which offers a unique solution to the problems encountered with CDM on sub-galactic scales. Although previous SIDM simulations have mainly considered elastic collisions, theoretical considerations motivate the existence of multi-state dark matter where transitions from the excited to the ground state are exothermic. In this work, we consider a self-interacting, two-state dark matter model with inelastic collisions, implemented in the Arepo code. We find that energy injection from inelastic self-interactions reduces the central density of the MW halo in a shorter timescale relative to the elastic scale, resulting in a larger core size. Inelastic collisions also isotropize the orbits, resulting in an overall lower velocity anisotropy for the inelastic MW halo. In the inner halo, the inelastic SIDM case (minor-to-major axis ratio s ≡ c/a ≈ 0.65) is more spherical than the CDM (s ≈ 0.4), but less spherical than the elastic SIDM case (s ≈ 0.75). The speed distribution f(v) of dark matter particles at the location of the Sun in the inelastic SIDM model shows a significant departure from the CDM model, with f(v) falling more steeply at high speeds. In addition, the velocity kicks imparted during inelastic collisions produce unbound high-speed particles with velocities up to 500 km s−1 throughout the halo. This implies that inelastic SIDM can potentially leave distinct signatures in direct detection experiments, relative to elastic SIDM and CDM.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 250
Author(s):  
Jiří Hájek ◽  
Zaneta Dlouha ◽  
Vojtěch Průcha

This article is a response to the state of the art in monitoring the cooling capacity of quenching oils in industrial practice. Very often, a hardening shop requires a report with data on the cooling process for a particular quenching oil. However, the interpretation of the data can be rather difficult. The main goal of our work was to compare various criteria used for evaluating quenching oils. Those of which prove essential for operation in tempering plants would then be introduced into practice. Furthermore, the article describes monitoring the changes in the properties of a quenching oil used in a hardening shop, the effects of quenching oil temperature on its cooling capacity and the impact of the water content on certain cooling parameters of selected oils. Cooling curves were measured (including cooling rates and the time to reach relevant temperatures) according to ISO 9950. The hardening power of the oil and the area below the cooling rate curve as a function of temperature (amount of heat removed in the nose region of the Continuous cooling transformation - CCT curve) were calculated. V-values based on the work of Tamura, reflecting the steel type and its CCT curve, were calculated as well. All the data were compared against the hardness and microstructure on a section through a cylinder made of EN C35 steel cooled in the particular oil. Based on the results, criteria are recommended for assessing the suitability of a quenching oil for a specific steel grade and product size. The quenching oils used in the experiment were Houghto Quench C120, Paramo TK 22, Paramo TK 46, CS Noro MO 46 and Durixol W72.


Sign in / Sign up

Export Citation Format

Share Document