scholarly journals Comparison of Industrial Quenching Oils

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 250
Author(s):  
Jiří Hájek ◽  
Zaneta Dlouha ◽  
Vojtěch Průcha

This article is a response to the state of the art in monitoring the cooling capacity of quenching oils in industrial practice. Very often, a hardening shop requires a report with data on the cooling process for a particular quenching oil. However, the interpretation of the data can be rather difficult. The main goal of our work was to compare various criteria used for evaluating quenching oils. Those of which prove essential for operation in tempering plants would then be introduced into practice. Furthermore, the article describes monitoring the changes in the properties of a quenching oil used in a hardening shop, the effects of quenching oil temperature on its cooling capacity and the impact of the water content on certain cooling parameters of selected oils. Cooling curves were measured (including cooling rates and the time to reach relevant temperatures) according to ISO 9950. The hardening power of the oil and the area below the cooling rate curve as a function of temperature (amount of heat removed in the nose region of the Continuous cooling transformation - CCT curve) were calculated. V-values based on the work of Tamura, reflecting the steel type and its CCT curve, were calculated as well. All the data were compared against the hardness and microstructure on a section through a cylinder made of EN C35 steel cooled in the particular oil. Based on the results, criteria are recommended for assessing the suitability of a quenching oil for a specific steel grade and product size. The quenching oils used in the experiment were Houghto Quench C120, Paramo TK 22, Paramo TK 46, CS Noro MO 46 and Durixol W72.

Author(s):  
Florian Kuisat ◽  
Fernando Lasagni ◽  
Andrés Fabián Lasagni

AbstractIt is well known that the surface topography of a part can affect its mechanical performance, which is typical in additive manufacturing. In this context, we report about the surface modification of additive manufactured components made of Titanium 64 (Ti64) and Scalmalloy®, using a pulsed laser, with the aim of reducing their surface roughness. In our experiments, a nanosecond-pulsed infrared laser source with variable pulse durations between 8 and 200 ns was applied. The impact of varying a large number of parameters on the surface quality of the smoothed areas was investigated. The results demonstrated a reduction of surface roughness Sa by more than 80% for Titanium 64 and by 65% for Scalmalloy® samples. This allows to extend the applicability of additive manufactured components beyond the current state of the art and break new ground for the application in various industrial applications such as in aerospace.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 408
Author(s):  
Ewa Sjöqvist Persson ◽  
Sofia Brorson ◽  
Alec Mitchell ◽  
Pär G. Jönsson

This study focuses on the impact of solidification on the inclusion morphologies in different sizes of production-scale electro-slag remelting (ESR) and electro-slag remelting under a protected pressure-controlled atmosphere, (PESR), ingots, in a common martensitic stainless steel grade. The investigation has been carried out to increase the knowledge of the solidification and change in inclusion morphologies during ESR and PESR remelting. In order to optimize process routes for different steel grades, it is important to define the advantages of different processes. A comparison is made between an electrode, ESR, and PESR ingots with different production-scale ingot sizes, from 400 mm square to 1050 mm in diameter. The electrode and two of the smallest ingots are from the same electrode charge. The samples are taken from both the electrode, ingots, and rolled/forged material. The solidification structure, dendrite arm spacing, chemical analyzes, and inclusion number on ingots and/or forged/rolled material are studied. The results show that the larger the ingot and the further towards the center of the ingot, the larger inclusions are found. As long as an ingot solidifies with a columnar dendritic structure (DS), the increase in inclusion number and size with ingot diameter is approximately linear. However, at the ingot size (1050 mm in diameter in this study) when the center of the ingot converts to solidification in the equiaxial mode (EQ), the increase in number and size of the inclusions is much higher. The transition between a dendritic and an equiaxial solidification in the center of the ingots in this steel grade takes place in the region between the ingot diameters of 800 and 1050 mm.


Logistics ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Hicham Lamzaouek ◽  
Hicham Drissi ◽  
Naima El Haoud

The bullwhip effect is a pervasive phenomenon in all supply chains causing excessive inventory, delivery delays, deterioration of customer service, and high costs. Some researchers have studied this phenomenon from a financial perspective by shedding light on the phenomenon of cash flow bullwhip (CFB). The objective of this article is to provide the state of the art in relation to research work on CFB. Our ambition is not to make an exhaustive list, but to synthesize the main contributions, to enable us to identify other interesting research perspectives. In this regard, certain lines of research remain insufficiently explored, such as the role that supply chain digitization could play in controlling CFB, the impact of CFB on the profitability of companies, or the impacts of the omnichannel commerce on CFB.


2021 ◽  
Vol 11 (15) ◽  
pp. 7046
Author(s):  
Jorge Francisco Ciprián-Sánchez ◽  
Gilberto Ochoa-Ruiz ◽  
Lucile Rossi ◽  
Frédéric Morandini

Wildfires stand as one of the most relevant natural disasters worldwide, particularly more so due to the effect of climate change and its impact on various societal and environmental levels. In this regard, a significant amount of research has been done in order to address this issue, deploying a wide variety of technologies and following a multi-disciplinary approach. Notably, computer vision has played a fundamental role in this regard. It can be used to extract and combine information from several imaging modalities in regard to fire detection, characterization and wildfire spread forecasting. In recent years, there has been work pertaining to Deep Learning (DL)-based fire segmentation, showing very promising results. However, it is currently unclear whether the architecture of a model, its loss function, or the image type employed (visible, infrared, or fused) has the most impact on the fire segmentation results. In the present work, we evaluate different combinations of state-of-the-art (SOTA) DL architectures, loss functions, and types of images to identify the parameters most relevant to improve the segmentation results. We benchmark them to identify the top-performing ones and compare them to traditional fire segmentation techniques. Finally, we evaluate if the addition of attention modules on the best performing architecture can further improve the segmentation results. To the best of our knowledge, this is the first work that evaluates the impact of the architecture, loss function, and image type in the performance of DL-based wildfire segmentation models.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 967
Author(s):  
Amirreza Mahbod ◽  
Gerald Schaefer ◽  
Christine Löw ◽  
Georg Dorffner ◽  
Rupert Ecker ◽  
...  

Nuclei instance segmentation can be considered as a key point in the computer-mediated analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have been proposed for this task, and among them, supervised deep learning (DL) methods deliver the best performances. An important criterion that can affect the DL-based nuclei instance segmentation performance of FS images is the utilised image bit depth, but to our knowledge, no study has been conducted so far to investigate this impact. In this work, we released a fully annotated FS histological image dataset of nuclei at different image magnifications and from five different mouse organs. Moreover, by different pre-processing techniques and using one of the state-of-the-art DL-based methods, we investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei instance segmentation performance. The results obtained from our dataset and another publicly available dataset showed very competitive nuclei instance segmentation performances for the models trained with 8 bit and 16 bit images. This suggested that processing 8 bit images is sufficient for nuclei instance segmentation of FS images in most cases. The dataset including the raw image patches, as well as the corresponding segmentation masks is publicly available in the published GitHub repository.


Author(s):  
Marvin Schmidt ◽  
Andreas Schütze ◽  
Stefan Seelecke

Energy saving and environmental protection are topics of growing interest. In the light of these aspects alternative refrigeration principles become increasingly important. Shape memory alloys (SMA), especially NiTi alloys, generate a large amount of latent heat during solid state phase transformations, which can lead to a significant cooling effect in the material. These materials do not only provide the potential for an energy-efficient cooling process, they also minimize the impact on the environment by reducing the need for conventional ozone-depleting refrigerants. Our paper, presenting first results obtained in a project within the DFG Priority Program SPP 1599 “Ferroic Cooling”, focuses on the thermodynamic analysis of a NiTi-based cooling system. We first introduce a suitable cooling process and subsequently illustrate the underlying mechanisms of the process in comparison with the conventional compression refrigeration system. We further introduce a graphical solution to calculate the energy efficiency ratio of the system. This thermodynamic analysis method shows the necessary work input and the heat absorption of the SMA in stress/strain- or temperature/entropy-diagrams, respectively. The results of the calculations underline the high potential of this solid-state cooling methodology.


Reproduction ◽  
2017 ◽  
Vol 154 (6) ◽  
pp. F93-F110 ◽  
Author(s):  
G D Palermo ◽  
C L O’Neill ◽  
S Chow ◽  
S Cheung ◽  
A Parrella ◽  
...  

Among infertile couples, 25% involve both male and female factors, while male factor alone accounts for another 25% due to oligo-, astheno-, teratozoospermia, a combination of the three, or even a complete absence of sperm cells in the ejaculate and can lead to a poor prognosis even with the help of assisted reproductive technology (ART). Intracytoplasmic sperm injection (ICSI) has been with us now for a quarter of a century and in spite of the controversy generated since its inception, it remains in the forefront of the techniques utilized in ART. The development of ICSI in 1992 has drastically decreased the impact of male factor, resulting in millions of pregnancies worldwide for couples who, without ICSI, would have had little chance of having their own biological child. This review focuses on the state of the art of ICSI regarding utility of bioassays that evaluate male factor infertility beyond the standard semen analysis and describes the current application and advances in regard to ICSI, particularly the genetic and epigenetic characteristics of spermatozoa and their impact on reproductive outcome.


2011 ◽  
Vol 66-68 ◽  
pp. 692-696
Author(s):  
Sui Chao ◽  
Ling Tao Wu ◽  
Jian Yun Chen

This study introduces the transport situation and polices of the highway agency for the M25. Then the current implementation of the Managed Motorway on M25 between junction 5 and junction 7 is reviewed, and some examples are given in this paper. Then a technical state-of-the-art of application is also reviewed. After that, the requirements for integration with complementary systems and polices are presented. Finally, this paper discusses the arguments for and against taking this application forward.


2013 ◽  
Vol 39 (1) ◽  
pp. 57-85 ◽  
Author(s):  
Alexander Fraser ◽  
Helmut Schmid ◽  
Richárd Farkas ◽  
Renjing Wang ◽  
Hinrich Schütze

We study constituent parsing of German, a morphologically rich and less-configurational language. We use a probabilistic context-free grammar treebank grammar that has been adapted to the morphologically rich properties of German by markovization and special features added to its productions. We evaluate the impact of adding lexical knowledge. Then we examine both monolingual and bilingual approaches to parse reranking. Our reranking parser is the new state of the art in constituency parsing of the TIGER Treebank. We perform an analysis, concluding with lessons learned, which apply to parsing other morphologically rich and less-configurational languages.


Sign in / Sign up

Export Citation Format

Share Document