Reconstructing 2D and 3D X-ray Orientation Maps From White-Beam Laue

Author(s):  
Jonathan Z. Tischler
Keyword(s):  
X Ray ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. K. Eseev ◽  
A. A. Goshev ◽  
K. A. Makarova ◽  
D. N. Makarov

AbstractIt is well known that the scattering of ultrashort pulses (USPs) of an electromagnetic field in the X-ray frequency range can be used in diffraction analysis. When such USPs are scattered by various polyatomic objects, a diffraction pattern appears from which the structure of the object can be determined. Today, there is a technical possibility of creating powerful USP sources and the analysis of the scattering spectra of such pulses is a high-precision instrument for studying the structure of matter. As a rule, such scattering occurs at a frequency close to the carrier frequency of the incident USP. In this work, it is shown that for high-power USPs, where the magnetic component of USPs cannot be neglected, scattering at the second harmonic appears. The scattering of USPs by the second harmonic has a characteristic diffraction pattern which can be used to judge the structure of the scattering object; combining the scattering spectra at the first and second harmonics therefore greatly enhances the diffraction analysis of matter. Scattering spectra at the first and second harmonics are shown for various polyatomic objects: examples considered are 2D and 3D materials such as graphene, carbon nanotubes, and hybrid structures consisting of nanotubes. The theory developed in this work can be applied to various multivolume objects and is quite simple for X-ray structural analysis, because it is based on analytical expressions.


2015 ◽  
Vol 4 (8) ◽  
pp. P324-P330 ◽  
Author(s):  
L. Kirste ◽  
A. N. Danilewsky ◽  
T. Sochacki ◽  
K. Köhler ◽  
M. Zajac ◽  
...  

2011 ◽  
Vol 7 (S282) ◽  
pp. 201-202 ◽  
Author(s):  
O. I. Sharova ◽  
M. I. Agafonov ◽  
E. A. Karitskaya ◽  
N. G. Bochkarev ◽  
S. V. Zharikov ◽  
...  

AbstractThe 2D and 3D Doppler tomograms of X-ray binary system Cyg X-1 (V1357 Cyg) were reconstructed from spectral data for the line HeII 4686Å obtained with 2-m telescope of the Peak Terskol Observatory (Russia) and 2.1-m telescope of the Mexican National Observatory in June, 2007. Information about gas motions outside the orbital plane, using all of the three velocity components Vx, Vy, Vz, was obtained for the first time. The tomographic reconstruction was carried out for the system inclination angle of 45°. The equal resolution (50 × 50 × 50 km/s) is realized in this case, in the orbital plane (Vx, Vy) and also in the perpendicular direction Vz. The checkout tomograms were realized also for the inclination angle of 40° because of the angle uncertainty. Two versions of the result showed no qualitative discrepancy. Details of the structures revealed by the 3D Doppler tomogram were analyzed.


2004 ◽  
Vol 831 ◽  
Author(s):  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
Rafael Dalmau ◽  
Raoul Schlesser ◽  
Zlatko Sitar

ABSTRACTFor nitride based devices such as LEDs, high power FETs and laser diodes, single crystal substrates of AlN are highly desirable. While the sublimation technique is suitable for growing bulk AlN crystals, appropriate seeds are also necessary for growing large diameter oriented boules. 4H- and 6H-SiC substrates which are readily available commercially can potentially be implemented as seeds for bulk AlN growth. However, issues regarding SiC decomposition at high temperatures, thermal expansion mismatch, single crystal growth, etc. need to be addressed. Towards this end, a series of growth experiments have been carried out in a resistively heated reactor using on and off-axis 4H- and 6H-SiC substrates as seeds for AlN growth from the vapor phase. Several hundred microns thick AlN layers have been grown under different growth conditions. Synchrotron white beam x-ray topography (SWBXT) has been used to map the defect distribution in the grown layers and high resolution triple axis x-ray diffraction (HRTXD) experiments were carried out to record reciprocal space maps from which tilt, mismatch and strain data can be obtained. These results are analyzed with respect to the growth conditions in order to gain a better understanding of this growth process.


1996 ◽  
Author(s):  
Hua Chung ◽  
Balaji Raghothamachar ◽  
Michael Dudley ◽  
David J. Larson, Jr.
Keyword(s):  
X Ray ◽  

1996 ◽  
Vol 423 ◽  
Author(s):  
W. Huang ◽  
M. Dudley ◽  
C. Fazi

AbstractDefect structures in (111) 3C-SiC single crystals, grown using the Baikov technique, have been studied using Synchrotron White Beam X-ray Topography (SWBXT). The major types of defects include complex growth sector boundary structures, double positioning twins, stacking faults on { 111 } planes, inclusions and dislocations (including growth dislocations and partial dislocations bounding stacking faults). Detailed stacking fault and double positioning twin configurations are determined using a combination of Nomarski interference microscopy, SEM and white beam x-ray topography in both transmission and reflection geometries. Possible defect generation phenomena are discussed.


2003 ◽  
Vol 42 (Part 2, No.9A/B) ◽  
pp. L1077-L1079 ◽  
Author(s):  
Xianyun Ma ◽  
Michael Dudley ◽  
William Vetter ◽  
Tangali Sudarshan

1993 ◽  
Vol 307 ◽  
Author(s):  
S. Wang ◽  
M. Dudley ◽  
C. Carter ◽  
D. Asbury ◽  
C. Fazit

ABSTRACTSynchrotron white beam X-ray topography has been used to characterize defect structures in 6H-SiC wafers grown on (0001) seeds. Two major types of defects are observed: super screw dislocations approximately perpendicular to the basal plane and dislocation networks lying in the basal plane. The super screw dislocations, which have open cores, are growth dislocations. These dislocations act as sources and/or sinks for the glide dislocation networks. Detailed analysis and discussion of dislocation generation phenomena and Burgers vectors will be presented.


Sign in / Sign up

Export Citation Format

Share Document