SHEAR STRESS-MEDIATED SIGNAL TRANSDUCTION

Author(s):  
JUN-ICHI ABE ◽  
SHI PAN ◽  
BROOKE KROVIC ◽  
KEIGI FUJIWARA
2002 ◽  
Vol 93 (6) ◽  
pp. 1907-1917 ◽  
Author(s):  
Mete Civelek ◽  
Kristy Ainslie ◽  
Jeff S. Garanich ◽  
John M. Tarbell

Smooth muscle cells (SMC) are exposed to fluid shear stress because of transmural (interstitial) flow across the arterial wall. This shear stress may play a role in the myogenic response and flow-mediated vasomotion. We, therefore, examined the effects of fluid flow on contraction of rat aortic SMC. SMC that had been serum-starved to induce a contractile phenotype were plated on quartz slides and exposed to controlled shear stress levels in a flow chamber. The area of the cells was quantified, and reduction in the cell area was reported as contraction. At 25 dyn/cm2, significant area reduction was apparent 3 min after the onset of flow and exceeded 30% at 30 min. At 1 dyn/cm2, significant contraction was not observed at 30 min. The threshold for significant shear-induced contraction appeared to be 11 dyn/cm2. The signal transduction mechanism was studied at 25 dyn/cm2. Intracellular calcium was imaged by using the calcium-sensitive fluorescent dye fura 2-AM. There was no detectable change in intracellular calcium during 10 min of exposure to shear stress, even though the cells displayed a significant calcium response to thapsigargin, calcium ionophore, and KCl. Further studies using pathway inhibitors provided evidence that the most important signal transduction pathway mediating calcium-independent contraction in response to fluid flow is the Rho-kinase pathway, although there was a suggestion that protein kinase C plays a secondary role.


2013 ◽  
Vol 27 (S1) ◽  
Author(s):  
Ana Paula Carneiro Santos ◽  
Valério Garrone Barauna ◽  
Miriam Helena Fonseca Alaniz ◽  
Adriana Castello Costa Girardi ◽  
José Eduardo Krieger

Author(s):  
А.А. Московцев ◽  
Д.В. Колесов ◽  
А.Н. Мыльникова ◽  
Д.М. Зайченко ◽  
А.А. Соколовская ◽  
...  

Эндотелиальные клетки, выстилающие стенки сосудов, являются одними из важнейших регуляторных элементов кровеносной системы. Непосредственно соприкасаясь с потоком крови, эти механочувствительные клетки способны детектировать свою деформацию через ее тангенциальный компонент (сдвиг) и составляющую, направленную по нормали к поверхности (растяжение). Деформация сдвига является ключевым индуктором комплекса сигнальных путей, опосредуемых тирозинкиназами, интегринами, ионными каналами, вовлекающих также мембранные липиды, гликокаликс и другие клеточные компоненты. На фоне достаточно большого количества данных о сигнальной трансдукции, в литературе меньше внимания уделено клеточной адаптации к сдвиговой деформации и сравнительно мало информации об участии генов стрессового ответа. Гидродинамические условия в определенных зонах сосудистой системы характеризуются значительной неоднородностью, что может приводить к ослаблению обратных связей, необходимых для поддержания гомеостаза в эндотелиальных клетках. Это может способствовать развитию заболеваний, например, таких, как атеросклероз. В обзоре обсуждаются новые аспекты и концепции, связанные с ответами эндотелиоцитов на сдвиговую деформацию и основные методы анализа эффектов сдвиговой деформации in vitro . Цель исследования. Обобщение современных данных о механизмах механочувствительности и механотрансдукции эндотелия. Результаты. В обзоре изложены основные механизмы механочувствительности клеток эндотелия, пути внутриклеточной передачи сигнала, рассмотрено вовлечение механизмов стрессового ответа клеток и адаптации. Обсуждаются эксперименты по изучению молекулярных основ механотрансдукции, в том числе белков и других молекул, вовлеченных в детектирование, передачу сигнала и клеточный ответ на сдвиговую деформацию. Endothelial cells lining the walls of blood vessels are one of the most important regulatory elements of the circulatory system. These mechanosensitive cells are in a direct contact with the flow of blood and able to detect deformation through its tangential component (shear) and the component directed along the normal to the surface (tension). Shear stress is the key inducer of the complex of signaling pathways mediated by tyrosine kinases, integrins, ion channels, involving also membrane lipids, glycocalyx and other cellular components. There are large amount of data on signal transduction in the literature, but less attention is paid to cellular adaptation to shear stress and there is relatively little information on the involvement of stress response genes in that process. Hydrodynamic conditions in certain zones of the vascular system are characterized by considerable heterogeneity, which can lead to weakening of feedbacks necessary for maintaining homeostasis in endothelial cells. This can contribute to the development of diseases such as atherosclerosis. This review presents new aspects and concepts related to the responses of endotheliocytes to shear stress and, in addition, highlights the basic methods of analyzing the effects of shear stress in vitro . Purpose of the study. Generalization of modern data on mechanisms of mechanosensitivity and mechanotransduction of the endothelium. Results. The review outlines the main mechanosensitivity mechanisms of endothelial cells, the pathways of intracellular signaling, the involvement of mechanisms of cellular stress response and adaptation. There are descriptions of experiments in which the molecular basis of mechanotransduction is identified, including the determination of proteins and other molecules involved in detection, signal transduction, and cellular response to shear stress.


2002 ◽  
Vol 115 (3) ◽  
pp. 475-484 ◽  
Author(s):  
Masashi Isshiki ◽  
Joji Ando ◽  
Kimiko Yamamoto ◽  
Toshiro Fujita ◽  
Yunshu Ying ◽  
...  

The caveola is a membrane domain that compartmentalizes signal transduction at the cell surface. Normally in endothelial cells, groups of caveolae are found clustered along stress fibers or at the lateral margins in all regions of the cell. Subsets of these clusters appear to contain the signaling machinery for initiating Ca2+ wave formation. Here we report that induction of cell migration, either by wounding a cell monolayer or by exposing cells to laminar shear stress, causes caveolae to move to the trailing edge of the cell. Concomitant with the relocation of the caveolae,sites of Ca2+ wave initiation move to the same location. In as much as the relocated caveolae contain elements of the signaling machinery required for ATP-stimulated release of Ca2+ from the ER, these results suggest that caveolae function as containers that carry this machinery to different cellular locations.


2015 ◽  
Vol 35 (suppl_1) ◽  
Author(s):  
Meimei Yin ◽  
Suowen Xu ◽  
Chelsea Wong ◽  
Michael A Mastrangelo ◽  
Zheng-Gen Jin

Endothelial dysfunction, characterized by a decrease of nitric oxide (NO) bioavailability in the vessel wall, plays a crucial role in the pathogenesis of atherosclerosis. Oxidative stress due to increased reactive oxygen species (ROS) is implicated in endothelial dysfunction associated with diabetes. However the molecular mechanisms by which oxidative stress causes endothelial dysfunction remain incompletely understood. Blood flow, which generates fluid shear stress acting on endothelium, is the most potent physiological stimulus for NO production through endothelial NO synthase (eNOS) activation. Here we report that hyperglycemia and oxidative stress impairs fluid shear stress signal transduction and eNOS activation in endothelium. We found that the exposure of endothelial cells (ECs) to ROS generators such as menadione and xanthine/xanthine oxidase inhibited laminar flow-mediated Akt and eNOS phosphorylation and activation in human endothelial cells. Moreover, ECs pre-exposed to high glucose that generates ROS production in ECs, failed to respond to laminar flow for Akt/eNOS phosphorylation and activation. Consequently NO production from ECs in response to laminar flow was attenuated by high glucose treatment. Mechanistically, we observed that hyperglycemia and oxidative stress altered endothelial adherens junction integrity, manifested by the alternation of the localization of cell-cell junction molecules vascular endothelial cadherin (VE-cadherin) and beta-catenin. Silencing VE-cadherin or beta-catenin with small interference RNA also inhibited laminar flow-mediated signaling for eNOS activation, which mimics the effects of oxidative stress, suggesting that cell-cell junction integrity is critical for fluid shear stress signal transduction and eNOS activation. Collectively, our results demonstrate that hyperglycemia and oxidative stress impair laminar flow-mediated eNOS activation through the alternation of endothelial junction integrity and fluid shear stress signal transduction. Our findings suggest a novel mechanism whereby oxidative stress induces diabetes-associated endothelial dysfunction.


Sign in / Sign up

Export Citation Format

Share Document