Syzygium aromaticum (clove) extract reduce virulence factors mediated by QS in Gram negative bacteria

Author(s):  
F. Llinares ◽  
M.J. Pozuelo ◽  
S. Casado ◽  
C. de Blas ◽  
J.A. Pinilla ◽  
...  
Antibiotics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 339
Author(s):  
Denise Dekker ◽  
Frederik Pankok ◽  
Thorsten Thye ◽  
Stefan Taudien ◽  
Kwabena Oppong ◽  
...  

Wound infections are common medical problems in sub-Saharan Africa but data on the molecular epidemiology are rare. Within this study we assessed the clonal lineages, resistance genes and virulence factors of Gram-negative bacteria isolated from Ghanaian patients with chronic wounds. From a previous study, 49 Pseudomonas aeruginosa, 21 Klebsiellapneumoniae complex members and 12 Escherichia coli were subjected to whole genome sequencing. Sequence analysis indicated high clonal diversity with only nine P. aeruginosa clusters comprising two strains each and one E. coli cluster comprising three strains with high phylogenetic relationship suggesting nosocomial transmission. Acquired beta-lactamase genes were observed in some isolates next to a broad spectrum of additional genetic resistance determinants. Phenotypical expression of extended-spectrum beta-lactamase activity in the Enterobacterales was associated with blaCTX-M-15 genes, which are frequent in Ghana. Frequently recorded virulence genes comprised genes related to invasion and iron-uptake in E. coli, genes related to adherence, iron-uptake, secretion systems and antiphagocytosis in P. aeruginosa and genes related to adherence, biofilm formation, immune evasion, iron-uptake and secretion systems in K. pneumonia complex. In summary, the study provides a piece in the puzzle of the molecular epidemiology of Gram-negative bacteria in chronic wounds in rural Ghana.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 341
Author(s):  
Nathalie Dautin

The type 5 secretion system (T5SS) is one of the more widespread secretion systems in Gram-negative bacteria. Proteins secreted by the T5SS are functionally diverse (toxins, adhesins, enzymes) and include numerous virulence factors. Mechanistically, the T5SS has long been considered the simplest of secretion systems, due to the paucity of proteins required for its functioning. Still, despite more than two decades of study, the exact process by which T5SS substrates attain their final destination and correct conformation is not totally deciphered. Moreover, the recent addition of new sub-families to the T5SS raises additional questions about this secretion mechanism. Central to the understanding of type 5 secretion is the question of protein folding, which needs to be carefully controlled in each of the bacterial cell compartments these proteins cross. Here, the biogenesis of proteins secreted by the Type 5 secretion system is discussed, with a focus on the various factors preventing or promoting protein folding during biogenesis.


2020 ◽  
Author(s):  
Hager Souabni ◽  
William Batista dos Santos ◽  
Quentin Cece ◽  
Dhenesh Puvanendran ◽  
Martin Picard

AbstractABC tripartite efflux pumps are macromolecular membrane protein machineries that expel a large variety of drugs and export virulence factors from Gram negative bacteria. Using a lipid scaffold mimicking the two-membrane environment of the transporter and designing spectroscopic conditions allowing the monitoring of both ATP hydrolysis and substrate transport in real time, we show that MacAB-TolC accommodates transport and energy consumption with high coupling efficiency.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 231
Author(s):  
Subramaniam Srikumaran

Leukotoxins are the critical virulence factors of several Gram-positive and Gram-negative bacteria [...]


2021 ◽  
Author(s):  
Hongbaek Cho ◽  
Oh Hyun Kwon ◽  
Joel W Sher ◽  
Bi-o Kim ◽  
You-Hee Cho

Type IV pili (T4P) are important virulence factors involved in host attachment and other aspects of bacterial pathogenesis. In Gram-negative bacteria, the T4P filament is polymerized from pilin subunits at the platform complex in the inner membrane (IM) and exits the outer membrane (OM) through the OM secretin channel. Although it is essential for T4P assembly and function, the OM secretin complexes can potentially impair the permeability barrier function of the OM and allow the entry of antibiotics and other toxic molecules. The mechanism by which Gram-negative bacteria prevent secretin-mediated OM leakage is currently not well understood. Here, we report a discovery of SlkA and SlkB (PA5122 and PA5123) that prevent permeation of several classes of antibiotics through the secretin channel of Pseudomonas aeruginosa type IV pili. We found these periplasmic proteins interact with the OM secretin complex and prevent toxic molecules from entering through the channel when there is a problem in the assembly of the T4P IM subcomplexes or when docking between the OM and IM complexes is defective.


Author(s):  
Silindile Maphosa ◽  
Lucy Moleleki ◽  
Thabiso Motaung

The type 6 protein secretion system (T6SS) is prevalently utilized by Gram-negative bacteria to compete for resources and space. Upon activation, toxic effectors from this secretion system are translocated into the competitor prokaryote or eukaryote in a contact-dependent manner. While much has been reported on T6SS-mediated prokaryotic competition, very little is understood about the mechanisms of bacterial interactions with eukaryotic hosts. Likewise, many virulent T6SS effectors are known to be antibacterial. In recent years, however, evidence has emerged on numerous T6SS effectors that interact with related immunity proteins in a range of eukaryotic hosts. Insights into how this effector-immunity pairing alters the physiological responses of the recipient organism might provide opportunities relating to the T6SS agricultural and biotherapeutic applications. We, therefore, summarize the impacts of the T6SS effectors with a special focus on bacterial interactions with animals, plants, and fungi. We further briefly discuss pipelines that are currently used to characterize antieukaryotic T6SS effectors.


Sign in / Sign up

Export Citation Format

Share Document