Summary Comments: Nuclear Physics and Gamma-Ray Sources for Nuclear Security and Nonproliferation

Author(s):  
C. P. J. Barty
2006 ◽  
Vol 15 (08) ◽  
pp. 1957-1965
Author(s):  
G. DE FRANCE

Gamma-ray spectroscopy associated to the clear identification of the emitting nuclei is a key to understand in a coherent way the nuclear structure of the elements located far from stability. The coupling of very efficient gamma-ray arrays and spectrometers has pushed away the limits and opened up new possibilities in nuclear physics studies. These combinations give access to a comprehensive picture of both the reaction mechanism and the nuclear structure of a given nucleus. In this talk, the various possibilities offered at GANIL with such a coupling will be given.


2020 ◽  
Vol 35 (10) ◽  
pp. 2050062
Author(s):  
Abdullah Engin Çalık ◽  
Kaan Manisa ◽  
Ahmet Biçer ◽  
Mehmet Erdoğan ◽  
Mürsel Şen ◽  
...  

Photonuclear reactions have great importance in understanding the structure of the nuclei. These reactions, performed using the gamma rays obtained by way of bremsstrahlung, are a standard nuclear physics experiment. In this study, a non-enriched barium sample was activated for the first time by using a clinical linear accelerator (cLINACs). The spectrum of barium radioisotopes was obtained by using a gamma spectrometry with a high purity germanium (HPGe) detector. The obtained spectroscopic data were analyzed and energy levels and half-life values together with their uncertainties were obtained. Some energy levels and half-lives of [Formula: see text]Ba were determined with more precision than those of literature values.


2018 ◽  
Vol 178 ◽  
pp. 01002
Author(s):  
N.V. Zamfir

The new research facility Extreme Light Infrastructure – Nuclear Physics (ELI-NP) is under construction in Romania, on the Magurele Physics campus. Valued more than 300 Meuros the center will be operational in 2019. The research center will use a high brilliance Gamma Beam and a High-power Laser beam, with unprecedented characteristics worldwide, to investigate the interaction of very intense radiation with matter with specific focus on nuclear phenomena and their applications. The energetic particle beams and radiation produced by the 2x10 PW laser beam interacting with matter will be studied. The precisely tunable energy and excellent bandwidth of the gamma-ray beam will allow for new experimental approaches regarding nuclear astrophysics, nuclear resonance fluorescence, and applications. The experimental equipment is presented, together with the main directions of the research envisioned with special emphasizes on nuclear physics studies.


Author(s):  
Filippo Mele

AbstractThe increasing demand for performance improvements in radiation detectors, driven by cutting-edge research in nuclear physics, astrophysics and medical imaging, is causing not only a proliferation in the variety of the radiation sensors, but also a growing necessity of tailored solutions for the front-end readout electronics. Within this work, novel solutions for application specific integrated circuits (ASICs) adopted in high-resolution X and $$\upgamma $$ γ  ray spectroscopy applications are studied. In the first part of this work, an ultra-low noise charge sensitive amplifier (CSA) is presented, with specific focus on sub-microsecond filtering, addressing the growing interest in high-luminosity experiments. The CSA demonstrated excellent results with Silicon Drift Detectors (SDDs), and with room temperature Cadmium-Telluride (CdTe) detectors, recording a state-of-the-art noise performance. The integration of the CSA within two full-custom radiation detection instruments realized for the ELETTRA (Trieste, Italy) and SESAME (Allan, Jordan) synchrotrons is also presented. In the second part of this work, an ASIC constellation designed for X-Gamma imaging spectrometer (XGIS) onboard of the THESEUS space mission is described. The presented readout ASIC has a highly customized distributed architecture, and integrates a complete on-chip signal filtering, acquisition and digitization with an ultra-low power consumption.


2019 ◽  
Vol 26 ◽  
pp. 188
Author(s):  
A. Zyriliou ◽  
A. Khaliel ◽  
T. J. Mertzimekis

Some of the mid–weight nuclei lie in the region of the isotopic chart where the astrophysical p-process has a prominent role in the nucleosynthetic scenarios. Experimentally deduced reaction cross section data can provide stringent tests for the astrophysical models, especially at low energies. In this framework, the reaction 112Cd(p,γ)113In has been studied experimentally at four proton beam energies 2.8 ≤ Ep≤ 3.4 MeV, partly inside the astrophysically interesting Gamow window. Proton beams were provided by the 5.5 MV T11 Van de Graaff Tandem Accelerator of the Institute of Nuclear Physics of the National Center for Scientific Research (NCSR) “Demokritos”. In–beam spectroscopy was carried out with an array of four HPGe detectors sitting on a rotating table. In total, eight (8) different angles were used to record gamma–ray spectra. Special focus was given on constructing the angular distribution of each gamma–ray feeding the ground state of 113In directly, so as to determine the reaction cross sections from the in–beam data, exclusively. The resulting cross sections were compared to Hauser–Feshbach calculations using the code TALYS v1.9.


2018 ◽  
Vol 184 ◽  
pp. 02006
Author(s):  
G. L. Guardo ◽  
A. Anzalone ◽  
D. Balabanski ◽  
S. Chesnevskaya ◽  
W. Crucillá ◽  
...  

The Extreme Light Infrastructure-Nuclear Physics (ELI-NP) facility, underconstruction in Magurele near Bucharest in Romania, will provide high-intensity andhigh-resolution gamma ray beams that can be used to address hotly debated problems in nuclear astrophysics, such as the accurate measurements of the cross sections of the24Mg(γ,α)20Ne reaction For this purpose, a silicon strip detector array (named ELISSA) will be realized in acommon effort by ELI-NP and Laboratori Nazionali del Sud (INFN-LNS), in order to measure excitation functions and angular distributions over a wide energy and angular range. A prototype of ELISSA was built and tested at INFN-LNS in Catania (Italy) with the support of ELI-NP. In this occasion, we have carried out experiments with alpha sources and with a 11 MeV 7Li beam that show up a very good energy resolution (better than 1%) and very good position resolution, of the order of 1 mm. Moreover, a threshold of 150 keV can be easily achieved with no cooling.


2018 ◽  
Vol 48 ◽  
pp. 1860115
Author(s):  
Alessandro Borella ◽  
Eric Boogers ◽  
Riccardo Rossa ◽  
Peter Schillebeeckx

The CLYC (Cs[Formula: see text]LiYCl[Formula: see text]:Ce) detector is a scintillator detector sensitive to both neutron and gamma radiation and capable of separating the two types of radiation by pulse-shape discrimination. This feature is interesting as pertains to the development of non-destructive assays for the safeguard of nuclear material, nuclear security, and fast-neutron personal dosimetry. A [Formula: see text] CLYC detector highly enriched with [Formula: see text]Li was purchased and tested with analog and digital electronics. In this work, we report on the characterization of the detector in terms of linearity, energy resolution, and full-energy efficiency for gamma rays. This characterization was achieved by measurements with calibrated gamma-ray point-sources with an analog measuring chain, in a well-defined, reproducible geometry. The experimental data were also used to validate a model of the detection system that was developed with the Monte Carlo code MCNP-CP. This work is part of a collaborative agreement between SCK•CEN and JRC-Geel.


2020 ◽  
pp. 255-372
Author(s):  
Hermann Kolanoski ◽  
Norbert Wermes

Already since the early 1960s semiconductor detectors have been employed in nuclear physics, in particular for gamma ray energy measurement. This chapter concentrates on position sensitive semiconductor detectors which have been developed in particle physics since the 1980s and which feature position resolutions in the range of 50–100 μ‎m by structuring the electrodes, thus reaching the best position resolutions of electronic detectors. For the first time this made the electronic measurement of secondary vertices and therewith the lifetime of heavy fermions possible. The chapter first conveys the basics of semiconductor physics, of semiconductor and metal-semiconductor junctions used in electronics and detector applications as well as particle detection with semiconductor detectors. It follows the description of different detector types, like strip and pixel detectors, silicon drift chambers and charged-coupled devices. New developments are addressed in the sections on ‘Monolithic pixel detectors’ and on ‘Precision timing with silicon detectors’. In the last sections detector deterioration by radiation damage is described and an overview of other semiconductor detector materials but silicon is given.


Sign in / Sign up

Export Citation Format

Share Document