Abnormal Quantum State Search Based on Parallel Phase Comparison

Author(s):  
Guanlei Xu ◽  
Xiaogang Xu ◽  
Xiaotong Wang

We discuss the problem of filtering out abnormal states from a larger number of quantum states. For this type of problem with [Formula: see text] items to be searched, both the traditional search by enumeration and classical Grover search algorithm have the complexity about [Formula: see text]. In this letter a novel quantum search scheme with exponential speed up is proposed for abnormal states. First, a new comprehensive quantum operator is well-designed to extract the superposition state containing all abnormal states with unknown number [Formula: see text] with complexity [Formula: see text] in probability 1 via well-designed parallel phase comparison. Then, every abnormal state is achieved respectively from [Formula: see text] abnormal states via [Formula: see text] times’ measurement. Finally, a numerical example is given to show the efficiency of the proposed scheme.

2009 ◽  
Vol 23 (31) ◽  
pp. 5727-5758 ◽  
Author(s):  
VLADIMIR E. KOREPIN ◽  
YING XU

This article reviews recent progress in quantum database search algorithms. The subject is presented in a self-contained and pedagogical way. The problem of searching a large database (a Hilbert space) for a target item is performed by the famous Grover algorithm which locates the target item with high probability and a quadratic speed-up compared with the corresponding classical algorithm. If the database is partitioned into blocks and one is searching for the block containing the target item instead of the target item itself, then the problem is referred to as partial search. Partial search trades accuracy for speed and the most efficient version is the Grover–Radhakrishnan–Korepin (GRK) algorithm. The target block can be further partitioned into sub-blocks so that GRK's can be performed in a sequence called a hierarchy. We study the Grover search and GRK partial search in detail and prove that a GRK hierarchy is less efficient than a direct GRK partial search. Both the Grover search and the GRK partial search can be generalized to the case with several target items (or target blocks for a GRK). The GRK partial search algorithm can also be represented in terms of group theory.


2002 ◽  
Vol 2 (5) ◽  
pp. 399-409
Author(s):  
S.L. Braunstein ◽  
A.K. Pati

We investigate the issue of speed-up and the necessity of entanglement in Grover's quantum search algorithm. We find that in a pure state implementation of Grover's algorithm entanglement is present even though the initial and target states are product states. In pseudo-pure state implementations, the separability of the states involved defines an entanglement boundary in terms of a bound on the purity parameter. Using this bound we investigate the necessity of entanglement in quantum searching for these pseudo-pure state implementations. If every active molecule involved in the ensemble is `charged for' then in existing machines speed-up without entanglement is not possible.


Symmetry ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 96
Author(s):  
Matteo G. A. Paris ◽  
Claudia Benedetti ◽  
Stefano Olivares

Quantum search algorithms provide a way to speed up combinatorial search, and have found several applications in modern quantum technology. In particular, spatial search on graphs, based on continuous-time quantum walks (CTQW), represents a promising platform for the implementation of quantum search in condensed matter systems. CTQW-based algorithms, however, work exactly on complete graphs, while they are known to perform poorly on realistic graphs with low connectivity. In this paper, we put forward an alternative search algorithm, based on structuring the oracle operator, which allows one to improve the localization properties of the walker by tuning only the on-site energies of the graph, i.e., without altering its topology. As such, the proposed algorithm is suitable for implementation in systems with low connectivity, e.g., rings of quantum dots or superconducting circuits. Oracle parameters are determined by Hamiltonian constraints, without the need for numerical optimization.


2009 ◽  
Vol 07 (08) ◽  
pp. 1531-1539 ◽  
Author(s):  
JIAYAN WEN ◽  
YI HUANG ◽  
DAOWEN QIU

In this paper, by constructing a more entangled quantum system, we shorten the adiabatic quantum search algorithm to constant time. On the other hand, we show that the speed-up of adiabatic quantum algorithms by selecting particular adiabatic evolution paths or injecting energy into the quantum system can be explained as a form of entanglement enlargement. These findings suggest that entanglement plays a fundamental role for the efficiency of algorithm performance.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1649
Author(s):  
Yuanye Zhu ◽  
Zeguo Wang ◽  
Bao Yan ◽  
Shijie Wei

The quantum search algorithm is one of the milestones of quantum algorithms. Compared with classical algorithms, it shows quadratic speed-up when searching marked states in an unsorted database. However, the success rates of quantum search algorithms are sensitive to the number of marked states. In this paper, we study the relation between the success rate and the number of iterations in a quantum search algorithm of given λ=M/N, where M is the number of marked state and N is the number of items in the dataset. We develop a robust quantum search algorithm based on Grover–Long algorithm with some uncertainty in the number of marked states. The proposed algorithm has the same query complexity ON as the Grover’s algorithm, and shows high tolerance of the uncertainty in the ratio M/N. In particular, for a database with an uncertainty in the ratio M±MN, our algorithm will find the target states with a success rate no less than 96%.


2021 ◽  
Vol 11 (11) ◽  
pp. 4776
Author(s):  
Kyungbae Jang ◽  
Gyeongju Song ◽  
Hyunjun Kim ◽  
Hyeokdong Kwon ◽  
Hyunji Kim ◽  
...  

Grover search algorithm is the most representative quantum attack method that threatens the security of symmetric key cryptography. If the Grover search algorithm is applied to symmetric key cryptography, the security level of target symmetric key cryptography can be lowered from n-bit to n2-bit. When applying Grover’s search algorithm to the block cipher that is the target of potential quantum attacks, the target block cipher must be implemented as quantum circuits. Starting with the AES block cipher, a number of works have been conducted to optimize and implement target block ciphers into quantum circuits. Recently, many studies have been published to implement lightweight block ciphers as quantum circuits. In this paper, we present optimal quantum circuit designs of symmetric key cryptography, including PRESENT and GIFT block ciphers. The proposed method optimized PRESENT and GIFT block ciphers by minimizing qubits, quantum gates, and circuit depth. We compare proposed PRESENT and GIFT quantum circuits with other results of lightweight block cipher implementations in quantum circuits. Finally, quantum resources of PRESENT and GIFT block ciphers required for the oracle of the Grover search algorithm were estimated.


2021 ◽  
Vol 111 (3) ◽  
Author(s):  
Maurice A. de Gosson

AbstractWe show that every Gaussian mixed quantum state can be disentangled by conjugation with a passive symplectic transformation, that is a metaplectic operator associated with a symplectic rotation. The main tools we use are the Werner–Wolf condition on covariance matrices and the symplectic covariance of Weyl quantization. Our result therefore complements a recent study by Lami, Serafini, and Adesso.


2014 ◽  
Vol 12 (01) ◽  
pp. 1450004 ◽  
Author(s):  
K. O. Yashodamma ◽  
P. J. Geetha ◽  
Sudha

The effect of filtering operation with respect to purification and concentration of entanglement in quantum states are discussed in this paper. It is shown, through examples, that the local action of the filtering operator on a part of the composite quantum state allows for purification of the remaining part of the state. The redistribution of entanglement in the subsystems of a noise affected state is shown to be due to the action of local filtering on the non-decohering part of the system. The varying effects of the filtering parameter, on the entanglement transfer between the subsystems, depending on the choice of the initial quantum state is illustrated.


Sign in / Sign up

Export Citation Format

Share Document