Immunostimulating and Antimetastatic Effects of Polysaccharides Purified from Ginseng Berry

2019 ◽  
Vol 47 (04) ◽  
pp. 823-839 ◽  
Author(s):  
Dae-Young Lee ◽  
Chan Woong Park ◽  
Sue Jung Lee ◽  
Hye-Ryung Park ◽  
Dae Bang Seo ◽  
...  

Ginseng root has been used in traditional oriental medicine for the enhancement of immune system function. The immunostimulatory effects of ginseng berry polysaccharides, however, remain unclear. Effects of polysaccharides from ginseng berry on the activation of natural killer (NK) cells and inhibition of tumors are reported. A crude polysaccharide was isolated from ginseng berry as a ginseng berry polysaccharide portion (GBPP) and was further fractionated using gel filtration chromatography to obtain the three polysaccharide fractions GBPP-I, -II and -III. GBPP-I consisted of mainly galactose (46.9%) and arabinose (27.5%). GBPP-I showed a high dose-dependent anticomplementary activity. Stimulation of murine peritoneal macrophages by GBPP-I showed the greatest enhancement of interleukin (IL)-6 and IL-12 and tumor necrosis factor (TNF)-[Formula: see text] production. In addition, an ex vivo assay of natural killer (NK) cell activity showed that oral ([Formula: see text] administration of GBPP-I significantly increased NK cell cytotoxicity in YAC-1 tumor cells and production of granzyme B. Prophylactic intravenous ([Formula: see text] and [Formula: see text] administration of GBPP-I significantly and dose-dependently inhibited lung metastatic activity in B16BL6 melanoma cells. Depletion of NK cells after injection of rabbit anti-asialo GM1 partially abolished the inhibitory effect of GBPP-I on lung metastasis, indicating that NK cells play an important role in anticancer effects. GBPP-I exerts a strong immune-enhancing activity and can prevent cancer metastasis through activation of NK cells and other immune-related cells.

2019 ◽  
Vol 20 (14) ◽  
pp. 3472 ◽  
Author(s):  
Monika Holubova ◽  
Martin Leba ◽  
Hana Gmucova ◽  
Valentina S. Caputo ◽  
Pavel Jindra ◽  
...  

Relapsed acute myeloid leukemia (AML) is a significant post-transplant complication lacking standard treatment and associated with a poor prognosis. Cellular therapy, which is already widely used as a treatment for several hematological malignancies, could be a potential treatment alternative. Natural killer (NK) cells play an important role in relapse control but can be inhibited by the leukemia cells highly positive for HLA class I. In order to restore NK cell activity after their ex vivo activation, NK cells can be combined with conditioning target cells. In this study, we tested NK cell activity against KG1a (AML cell line) with and without two types of pretreatment—Ara-C treatment that induced NKG2D ligands (increased activating signal) and/or blocking of HLA–KIR (killer-immunoglobulin-like receptors) interaction (decreased inhibitory signal). Both treatments improved NK cell killing activity. Compared with target cell killing of NK cells alone (38%), co-culture with Ara-C treated KG1a target cells increased the killing to 80%. Anti-HLA blocking antibody treatment increased the proportion of dead KG1a cells to 53%. Interestingly, the use of the combination treatment improved the killing potential to led to the death of 85% of KG1a cells. The combination of Ara-C and ex vivo activation of NK cells has the potential to be a feasible approach to treat relapsed AML after hematopoietic stem cell transplantation.


Parasitology ◽  
2011 ◽  
Vol 138 (14) ◽  
pp. 1898-1909 ◽  
Author(s):  
THORSTEN LIEKE ◽  
SUSANNE NYLÉN ◽  
LIV EIDSMO ◽  
CHRISTEL SCHMETZ ◽  
LOUISE BERG ◽  
...  

SUMMARYNK cells represent one of the first lines of defence in the immune reaction after invasion ofLeishmaniaparasites. Depletion of mouse natural killer (NK) cells dramatically enhances susceptibility of normally resistant mice. In this study we evaluated the fate of NK cells and parasites after contact formation. The hydrophilic fluorescent dye CMFDA (chloro-methylfluorescin diacetate) that allows analysis of cytotoxicity in flow cytometry and microscopy was used. Furthermore, these findings were confirmed with scanning and transmission electron microscopy. Direct contact points were found betweenLeishmaniapromastigotes and naïve human NK cells. These contacts were associated with transfer of cytosol by membrane bridges and cytotoxicity of NK cells againstLeishmania. However, in contrast to other target cells which allow repeated exocytosis of lytic granules, contact withLeishmaniacauses immediate destruction of NK cells in a non-apoptotic way. Our results give a reasonable explanation forex vivoobservations of reduced NK cell numbers and impaired NK response in patients with acute cutaneous leishmaniasis. Animal models have clearly shown that NK cells play a key role in the induction and direction of the immune response. Thus inhibition of NK cells at the onset of infection would be advantageous for the survival of the parasite.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yan Feng ◽  
Yan Li ◽  
Ying Zhang ◽  
Bo-Hao Zhang ◽  
Hui Zhao ◽  
...  

Abstract Background Brain ischemia compromises natural killer (NK) cell-mediated immune defenses by acting on neurogenic and intracellular pathways. Less is known about the posttranscriptional mechanisms that regulate NK cell activation and cytotoxicity after ischemic stroke. Methods Using a NanoString nCounter® miRNA array panel, we explored the microRNA (miRNA) profile of splenic NK cells in mice subjected to middle cerebral artery occlusion. Differential gene expression and function/pathway analysis were applied to investigate the main functions of predicted miRNA target genes. miR-1224 inhibitor/mimics transfection and passive transfer of NK cells were performed to confirm the impact of miR-1224 in NK cells after brain ischemia. Results We observed striking dysregulation of several miRNAs in response to ischemia. Among those miRNAs, miR-1224 markedly increased 3 days after ischemic stroke. Transfection of miR-1224 mimics into NK cells resulted in suppression of NK cell activity, while an miR-1224 inhibitor enhanced NK cell activity and cytotoxicity, especially in the periphery. Passive transfer of NK cells treated with an miR-1224 inhibitor prevented the accumulation of a bacterial burden in the lungs after ischemic stroke, suggesting an enhanced immune defense of NK cells. The transcription factor Sp1, which controls cytokine/chemokine release by NK cells at the transcriptional level, is a predicted target of miR-1224. The inhibitory effect of miR-1224 on NK cell activity was blocked in Sp1 knockout mice. Conclusions These findings indicate that miR-1224 may serve as a negative regulator of NK cell activation in an Sp1-dependent manner; this mechanism may be a novel target to prevent poststroke infection specifically in the periphery and preserve immune defense in the brain.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Reza Hosseini ◽  
Hamzeh Sarvnaz ◽  
Maedeh Arabpour ◽  
Samira Molaei Ramshe ◽  
Leila Asef-Kabiri ◽  
...  

AbstractTumor-derived exosomes (TDEs) play pivotal roles in several aspects of cancer biology. It is now evident that TDEs also favor tumor growth by negatively affecting anti-tumor immunity. As important sentinels of immune surveillance system, natural killer (NK) cells can recognize malignant cells very early and counteract the tumor development and metastasis without a need for additional activation. Based on this rationale, adoptive transfer of ex vivo expanded NK cells/NK cell lines, such as NK-92 cells, has attracted great attention and is widely studied as a promising immunotherapy for cancer treatment. However, by exploiting various strategies, including secretion of exosomes, cancer cells are able to subvert NK cell responses. This paper reviews the roles of TDEs in cancer-induced NK cells impairments with mechanistic insights. The clinical significance and potential approaches to nullify the effects of TDEs on NK cells in cancer immunotherapy are also discussed.


Blood ◽  
1985 ◽  
Vol 66 (5) ◽  
pp. 1043-1046
Author(s):  
GD Goss ◽  
MA Wittwer ◽  
WR Bezwoda ◽  
J Herman ◽  
A Rabson ◽  
...  

Bone marrow transplantation for severe idiopathic aplastic anemia was undertaken in a patient, using his monozygotic twin brother as the donor. In spite of the use of syngeneic bone marrow, failure of engraftment occurred on two occasions. In vitro studies demonstrated that natural killer (NK) cells from the recipient markedly inhibited the growth of donor bone marrow granulocyte progenitor cells. On a third attempt, successful bone marrow engraftment was achieved following high-dose cyclophosphamide, which has previously been shown to be inhibitory to NK cells. We conclude that NK cell activity may play an important role in bone marrow failure as well as being responsible for at least some cases of aplastic anemia.


Author(s):  
Ethan G Aguilar ◽  
Cordelia Dunai ◽  
Sean J. Judge ◽  
Anthony Elston Zamora ◽  
Lam T. Khuat ◽  
...  

Natural Killer (NK) cells are involved in innate defense against viral infection and cancer. NK cells can be divided into subsets based on the ability of different receptors to bind to major histocompatibility (MHC) class I molecules resulting in differential responses upon activation in a process called "licensing" or "arming". NK cells expressing receptors that bind self-MHC are considered licensed due to augmented effector lytic function capability compared to unlicensed subsets. However, we demonstrated unlicensed NK subsets instead positively regulate the adaptive T cell response during viral infections due to localization and cytokine production. We demonstrate here that the differential effects of the two types of NK subsets is contingent on the environment using viral infection and hematopoietic stem cell transplantation (HSCT) models. Infection of mice with high-dose (HD) MCMV leads to a loss of licensing-associated differences as compared to mice with low-dose infection, as the unlicensed NK subset no longer localized in lymph nodes (LN), but instead remained at the site of infection. Similarly, the patterns observed during HD infection paralleled with the phenotypes of both human and mouse NK cells in a HSCT setting where NK cells exhibit an activated phenotype. However, in contrast to effects of subset depletion in T-replete models, the licensed NK cell subsets still dominated anti-viral responses post-HSCT. Overall, our results highlight the intricate tuning of the NK cells and how it impacts overall immune responses with regard to licensing patterns, as it is dependent on the level of stimulation and their activation status.


Blood ◽  
2009 ◽  
Vol 114 (19) ◽  
pp. 4081-4088 ◽  
Author(s):  
Ting Zhang ◽  
Shuxun Liu ◽  
Pengyuan Yang ◽  
Chaofeng Han ◽  
Jianli Wang ◽  
...  

Abstract Tissue microenvironment and stroma-derived extracellular matrix (ECM) molecules play important roles in the survival and differentiation of cells. Mouse natural killer (NK) cells usually die within 24 hours once isolated ex vivo. Exogenous cytokines such as interleukin-12 (IL-12) and IL-15 are required to maintain the survival and activity of mouse NK cells cultured in vitro. Whether and how ECM molecules such as fibronectin can support the survival of NK cells remain unknown. We demonstrate that fibronectin, just like IL-15, can maintain survival of mouse NK cells in vitro. Furthermore, we show that fibronectin binds to the CD11b on NK cells, and then CD11b recruits and activates Src. Src can directly interact with β-catenin and trigger nuclear translocation of β-catenin. The activation of β-catenin promotes extracellular signal-related kinase (ERK) phosphorylation, resulting in the increased expression of antiapoptotic protein B-cell leukemia 2 (Bcl-2), which may contribute to the maintenance of NK-cell survival. Consistently, fibronectin cannot maintain the survival of CD11b− NK cells and β-catenin–deficient NK cells in vitro, and the number of NK cells is dramatically decreased in the β-catenin–deficient mice. Therefore, fibronectin can maintain survival of mouse NK cells by activating ERK and up-regulating Bcl-2 expression via CD11b/Src/β-catenin pathway.


1995 ◽  
Vol 79 (3) ◽  
pp. 732-737 ◽  
Author(s):  
S. J. Won ◽  
M. T. Lin

The effects of different ambient temperatures (Ta) on the splenic natural killer (NK) cell activity, effector-target cell conjugation activity, and NK cell numbers were assessed in male inbred C3H/HeNCrj mice (7–10 wk old). The splenic NK cytotoxic activities were examined in a 4-h 51Cr release assay in mouse spleen cells that were obtained 1, 2, 4, 8, or 16 days after exposure to Ta of 22, 4, or 35 degrees C. The percentage of conjugating lymphocytes was calculated by counting the number of single lymphocytes bound to single target cells per 400 effector cells. The numbers of NK cells were expressed by the percentage of 5E6-positive cells. The 5E6 identifies only a subset of NK cells. It was found that the splenic NK cell activity, the effector-target cell conjugation activity, or the NK cell number began to fall 1 day after cold (Ta 4 degrees C) or heat (Ta 35 degrees C) stress. After a 16-day period of either cold or heat exposure, the fall in the splenic NK cell activity, the effector-target cell conjugation activity, or the number of 5E6-positive subsets of NK cells was still evident. Compared with those of the control group (Ta 22 degrees C), the cold-stressed mice had higher adrenal cortisol concentration and lower colonic temperature, whereas the heat-stressed animals had higher adrenal cortisol concentration and higher colonic temperature during a 16-day period of thermal exposure. However, neither cold nor heat stress affected both the body weight gain and the spleen weight in our mice.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2417 ◽  
Author(s):  
Tram N. Dao ◽  
Sagar Utturkar ◽  
Nadia Atallah Lanman ◽  
Sandro Matosevic

Among natural killer (NK) cell receptors, the T-cell immunoglobulin and mucin-containing domain (TIM-3) has been associated with both inhibitory and activating functions, depending on context and activation pathway. Ex vivo and in vitro, expression of TIM-3 is inducible and depends on activation stimulus. Here, we report that TIM-3 expression can be downregulated on NK cells under specific conditions. When NK cells are exposed to cancer targets, they synergize with stimulation conditions to induce a substantial decrease in TIM-3 expression on their surface. We found that such downregulation occurs following prior NK activation. Downregulated TIM-3 expression correlated to lower cytotoxicity and lower interferon gamma (IFN-γ) expression, fueling the notion that TIM-3 might function as a benchmark for human NK cell dysfunction.


Sign in / Sign up

Export Citation Format

Share Document