scholarly journals ENERGY DISTRIBUTION OF (2+1)-DIMENSIONAL BLACK HOLES WITH NONLINEAR ELECTRODYNAMICS

2009 ◽  
Vol 24 (34) ◽  
pp. 2777-2785 ◽  
Author(s):  
LEONARDO BALART

The energy distributions for a black hole solution resulting from coupling electrodynamics and gravity in (2+1) dimensions are obtained. This solution considers the correction for a (2+1) static charged black hole from the first contribution of the weak field limit of one-loop QED in (2+1) dimensions. The Einstein and Møller energy–momentum prescriptions are used to evaluate the energy distributions associated with the mentioned (2+1)-dimensional black hole and other (2+1) black hole solutions coupled with nonlinear electrodynamics. A relation that connects the coefficients of both prescriptions is established.

Author(s):  
Mohammad Bagher Jahani Poshteh ◽  
Nematollah Riazi

A regular static, spherically symmetric electrically charged black hole solution of general relativity coupled to a new theory for nonlinear electrodynamics is presented. This theory has the interesting feature that, at far distances from the black hole, in the weak field limit, the theory reduces to Maxwell Lagrangian with Heisenberg–Euler correction term of quantum electrodynamics. The singular center of the black hole is replaced by flat, de Sitter, or anti de Sitter space, if the spacetime in which the black hole is embedded is asymptotically flat, de Sitter, or anti de Sitter, respectively. Requiring the correspondence to Heisenberg–Euler Lagrangian at large distances, in the weak field limit, we find that (i) a minimum mass is required for the formation of an event horizon for the regular static, spherically symmetric solution of the theory, and, (ii) the mass of the solution must be quantized. We also study the basic thermodynamic properties of the black hole solution and show that they are qualitatively similar to those of Reissner–Nordström black hole.


2005 ◽  
Vol 20 (32) ◽  
pp. 2487-2496 ◽  
Author(s):  
A. S. MAJUMDAR ◽  
NUPUR MUKHERJEE

The existence of braneworld black holes may be of primordial origin, or may even be produced in high energy particle collisions in the laboratory and in cosmic ray showers as well. These black holes obey a modified mass–radius relationship compared to standard Schwarzschild black holes. Using the variational principle we calculate the bending angle of a light ray near the horizon of a braneworld black hole in the weak field limit. We next derive the expressions of several lensing quantities like the Einstein radius and the magnification for a point light source. These expressions are modified compared to the lensing quantities for standard Schwarzschild black holes and contain the scale of the extra dimensions.


2019 ◽  
Vol 34 (35) ◽  
pp. 1930017 ◽  
Author(s):  
Antonio Gallerati

We perform a detailed analysis of black hole solutions in supergravity models. After a general introduction on black holes in general relativity and supersymmetric theories, we provide a detailed description of ungauged extended supergravities and their dualities. Therefore, we analyze the general form of black hole configurations for these models, their near-horizon behavior and characteristic of the solution. An explicit construction of a black hole solution with its physical implications is given for the STU-model. The second part of this review is dedicated to gauged supergravity theories. We describe a step-by-step gauging procedure involving the embedding tensor formalism to be used to obtain a gauged model starting from an ungauged one. Finally, we analyze general black hole solutions in gauged models, providing an explicit example for the [Formula: see text], [Formula: see text] case. A brief review on special geometry is also provided, with explicit results and relations for supersymmetric black hole solutions.


2020 ◽  
Vol 29 (12) ◽  
pp. 2050081
Author(s):  
S. Rajaee Chaloshtary ◽  
M. Kord Zangeneh ◽  
S. Hajkhalili ◽  
A. Sheykhi ◽  
S. M. Zebarjad

We investigate a new class of [Formula: see text]-dimensional topological black hole solutions in the context of massive gravity and in the presence of logarithmic nonlinear electrodynamics. Exploring higher-dimensional solutions in massive gravity coupled to nonlinear electrodynamics is motivated by holographic hypothesis as well as string theory. We first construct exact solutions of the field equations and then explore the behavior of the metric functions for different values of the model parameters. We observe that our black holes admit the multi-horizons caused by a quantum effect called anti-evaporation. Next, by calculating the conserved and thermodynamic quantities, we obtain a generalized Smarr formula. We find that the first law of black holes thermodynamics is satisfied on the black hole horizon. We study thermal stability of the obtained solutions in both canonical and grand canonical ensembles. We reveal that depending on the model parameters, our solutions exhibit a rich variety of phase structures. Finally, we explore, for the first time without extending thermodynamics phase space, the critical behavior and reentrant phase transition for black hole solutions in massive gravity theory. We realize that there is a zeroth-order phase transition for a specified range of charge value and the system experiences a large/small/large reentrant phase transition due to the presence of nonlinear electrodynamics.


Author(s):  
Sergey Kruglov

An exact spherically symmetric and magnetically charged black hole solution in 4D Einstein-Gauss-Bonnet gravity coupled to nonlinear electrodynamics (NED) is obtained. The NED Lagrangian is given by ${\cal L}_{NED} = -{\cal F}/(1+\sqrt[4]{2\beta{\cal F}})$, where ${\cal F}$ is the field invariant. We study the thermodynamics calculating the Hawking temperature and the heat capacity of the black hole. The phase transitions take place when the Hawking temperature has an extremum and the heat capacity is singular. We demonstrate that black holes are thermodynamically stable in some range of event horizon radii where the heat capacity is positive. The BH shadow radii are calculated. It is shown that when increasing the nonlinearity parameter $\beta$ the BH shadow radius is decreased.


Author(s):  
S. Habib Mazharimousavi

Recently, the inverse electrodynamics model (IEM) was introduced and applied to find Reissner–Nordström black holes in the context of the general relativity coupled minimally with the nonlinear electrodynamics. The solution consists of both electric and magnetic fields as of the dyonic solutions. Here, in this note, we show that the IEM model belongs to a more general class of the nonlinear electrodynamics with [Formula: see text]. Here, [Formula: see text] is the energy momentum tensor of the nonlinear electrodynamic Lagrangian. Naturally, such a dyonic RN black hole solution is the solution for this general class.


2021 ◽  
Vol 81 (4) ◽  
Author(s):  
Zi-Yu Tang ◽  
Bin Wang ◽  
Eleftherios Papantonopoulos

AbstractWe consider Maxwell-f(R) gravity and obtain an exact charged black hole solution with dynamic curvature in D-dimensions. Considering a spherically symmetric metric ansatz and without specifying the form of f(R) we find a general black hole solution in D-dimensions. This general black hole solution can reduce to the Reissner–Nordström (RN) black hole in D-dimensions in Einstein gravity and to the known charged black hole solutions with constant curvature in f(R) gravity. Restricting the parameters of the general solution we get polynomial solutions which reveal novel properties when compared to RN black holes. Specifically we study the solution in $$(3+1)$$ ( 3 + 1 ) -dimensions in which the form of f(R) can be solved explicitly giving a dynamic curvature and compare it with the RN black hole. We also carry out a detailed study of its thermodynamics.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450095 ◽  
Author(s):  
S. H. Hendi ◽  
M. Sepehri Rad

Employing linear order perturbation theory with the rotation parameter as the perturbative parameter, we obtain asymptotically AdS slowly rotating black hole solutions in the Einstein gravity with Born–Infeld (BI) type nonlinear electrodynamics (NED). We start from asymptotically AdS static black hole solutions coupled to BI type NED in five dimensions. Then, we consider the effect of adding a small amount of angular momenta to the seed solutions. Finally, we investigate the geometry and thermodynamic properties of the solutions.


Sign in / Sign up

Export Citation Format

Share Document