scholarly journals A statistical analysis of the minimal SUSY B–L theory

2015 ◽  
Vol 30 (18) ◽  
pp. 1550085 ◽  
Author(s):  
Burt A. Ovrut ◽  
Austin Purves ◽  
Sogee Spinner

The structure of the B–L minimal supersymmetric Standard Model (MSSM) theory — specifically, the relevant mass scales and soft supersymmetric breaking parameters — is discussed. The space of initial soft parameters is explored at the high scale using random statistical sampling subject to a constraint on the range of dimensionful parameters. For every chosen initial point, the complete set of renormalization group equations is solved. The low energy results are then constrained to be consistent with present experimental data. It is shown that a large set of initial conditions satisfy these constraints and lead to acceptable low energy particle physics. Each such initial point has explicit predictions, such as the exact physical sparticle spectrum which is presented for two such points. There are also statistical predictions for the masses of the sparticles and the LSP species which are displayed as histograms. Finally, the fine-tuning of the μ parameter — which is always equivalent to or smaller than in the MSSM — is discussed.

Author(s):  
Jean Zinn-Justin

Supersymmetry has been proposed, in particular as a principle to solve the so-called fine-tuning problem in particle physics by relating the masses of scalar particles (like Higgs fields) to those of fermions, which can be protected against ‘large’ mass renormalization by chiral symmetry. However, supersymmetry is, at best, an approximate symmetry broken at a scale beyond the reach of a large hadron collider (LHC), because the possible supersymmetric partners of known particles have not been discovered yet (2020) and thus, if they exist, must be much heavier. Exact supersymmetry would also have implied the vanishing of the vacuum energy and thus, of the cosmological constant. The discovery of dark energy has a natural interpretation as resulting from a very small cosmological constant. However, a naive model based on broken supersymmetry would still predict 60 orders of magnitude too large a value compared to 120 orders of magnitude otherwise. Gauging supersymmetry leads naturally to a unification with gravity, because the commutators of supersymmetry currents involve the energy momentum tensor. First, examples of supersymmetric theories involving scalar superfields, simple generalizations of supersymmetric quantum mechanics (QM) are described. The new feature of supersymmetry in higher dimensions is the combination of supersymmetry with spin, since fermions have spins. In four dimensions, theories with chiral scalar fields and vector fields are constructed.


2011 ◽  
Vol 7 (S281) ◽  
pp. 280-283 ◽  
Author(s):  
Chenchong Zhu ◽  
Philip Chang ◽  
Marten van Kerkwijk ◽  
James Wadsley

AbstractRecent studies have shown that for suitable initial conditions both super- and sub-Chandrasekhar mass carbon-oxygen white dwarf mergers produce explosions similar to observed SNe Ia. The question remains, however, how much fine tuning is necessary to produce these conditions. We performed a large set of SPH merger simulations, sweeping the possible parameter space. We find trends for merger remnant properties, and discuss how our results affect the viability of our recently proposed sub-Chandrasekhar merger channel for SNe Ia.


2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Anthony Ashmore ◽  
Sebastian Dumitru ◽  
Burt A. Ovrut

Abstract The strongly coupled heterotic M-theory vacuum for both the observable and hidden sectors of the B − L MSSM theory is reviewed, including a discussion of the “bundle” constraints that both the observable sector SU(4) vector bundle and the hidden sector bundle induced from a single line bundle must satisfy. Gaugino condensation is then introduced within this context, and the hidden sector bundles that exhibit gaugino condensation are presented. The condensation scale is computed, singling out one line bundle whose associated condensation scale is low enough to be compatible with the energy scales available at the LHC. The corresponding region of Kähler moduli space where all bundle constraints are satisfied is presented. The generic form of the moduli dependent F-terms due to a gaugino superpotential — which spontaneously break N = 1 supersymmetry in this sector — is presented and then given explicitly for the unique line bundle associated with the low condensation scale. The moduli-dependent coefficients for each of the gaugino and scalar field soft supersymmetry breaking terms are computed leading to a low-energy effective Lagrangian for the observable sector matter fields. We then show that at a large number of points in Kähler moduli space that satisfy all “bundle” constraints, these coefficients are initial conditions for the renormalization group equations which, at low energy, lead to completely realistic physics satisfying all phenomenological constraints. Finally, we show that a substantial number of these initial points also satisfy a final constraint arising from the quadratic Higgs-Higgs conjugate soft supersymmetry breaking term.


Author(s):  
Alessandro Chiarini ◽  
Maurizio Quadrio

AbstractA direct numerical simulation (DNS) of the incompressible flow around a rectangular cylinder with chord-to-thickness ratio 5:1 (also known as the BARC benchmark) is presented. The work replicates the first DNS of this kind recently presented by Cimarelli et al. (J Wind Eng Ind Aerodyn 174:39–495, 2018), and intends to contribute to a solid numerical benchmark, albeit at a relatively low value of the Reynolds number. The study differentiates from previous work by using an in-house finite-differences solver instead of the finite-volumes toolbox OpenFOAM, and by employing finer spatial discretization and longer temporal average. The main features of the flow are described, and quantitative differences with the existing results are highlighted. The complete set of terms appearing in the budget equation for the components of the Reynolds stress tensor is provided for the first time. The different regions of the flow where production, redistribution and dissipation of each component take place are identified, and the anisotropic and inhomogeneous nature of the flow is discussed. Such information is valuable for the verification and fine-tuning of turbulence models in this complex separating and reattaching flow.


Universe ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 45
Author(s):  
Christof Wetterich

We compute the effective potential for scalar fields in asymptotically safe quantum gravity. A scaling potential and other scaling functions generalize the fixed point values of renormalizable couplings. The scaling potential takes a non-polynomial form, approaching typically a constant for large values of scalar fields. Spontaneous symmetry breaking may be induced by non-vanishing gauge couplings. We strengthen the arguments for a prediction of the ratio between the masses of the top quark and the Higgs boson. Higgs inflation in the standard model is unlikely to be compatible with asymptotic safety. Scaling solutions with vanishing relevant parameters can be sufficient for a realistic description of particle physics and cosmology, leading to an asymptotically vanishing “cosmological constant” or dynamical dark energy.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 273
Author(s):  
Mariana Graña ◽  
Alvaro Herráez

The swampland is the set of seemingly consistent low-energy effective field theories that cannot be consistently coupled to quantum gravity. In this review we cover some of the conjectural properties that effective theories should possess in order not to fall in the swampland, and we give an overview of their main applications to particle physics. The latter include predictions on neutrino masses, bounds on the cosmological constant, the electroweak and QCD scales, the photon mass, the Higgs potential and some insights about supersymmetry.


2004 ◽  
Vol 19 (02) ◽  
pp. 179-204 ◽  
Author(s):  
I. HINCHLIFFE ◽  
N. KERSTING ◽  
Y. L. MA

We present a pedagogical review of particle physics models that are based on the noncommutativity of space–time, [Formula: see text], with specific attention to the phenomenology these models predict in particle experiments either in existence or under development. We summarize results obtained for high energy scattering such as would occur, for example, in a future e+e-linear collider with [Formula: see text], as well as low energy experiments such as those pertaining to elementary electric dipole moments and other CP violating observables, and finally comment on the status of phenomenological work in cosmology and extra dimensions.


2018 ◽  
Vol 618 ◽  
pp. A116 ◽  
Author(s):  
J. Prieto-Arranz ◽  
E. Palle ◽  
D. Gandolfi ◽  
O. Barragán ◽  
E. W. Guenther ◽  
...  

Context. Multiplanet systems are excellent laboratories to test planet formation models as all planets are formed under the same initial conditions. In this context, systems transiting bright stars can play a key role, since planetary masses, radii, and bulk densities can be measured. Aims. GJ 9827 (K2-135) has recently been found to host a tightly packed system consisting of three transiting small planets whose orbital periods of 1.2, 3.6, and 6.2 days are near the 1:3:5 ratio. GJ 9827 hosts the nearest planetary system (~30 pc) detected by NASA’s Kepler or K2 space mission. Its brightness (V = 10.35 mag) makes the star an ideal target for detailed studies of the properties of its planets. Methods. Combining the K2 photometry with high-precision radial-velocity measurements gathered with the FIES, HARPS, and HARPS-N spectrographs we revised the system parameters and derive the masses of the three planets. Results. We find that GJ 9827 b has a mass of Mb = 3.69−0.46+0.48 M⊕ and a radius of Rb = 1.58−0.13+0.14 R⊕, yielding a mean density of ρb = 5.11−1.27+1.74 g cm−3. GJ 9827 c has a mass of Mc = 1.45−0.57+0.58 M⊕, radius of Rc = 1.24−0.11+0.11 R⊕, and a mean density of ρc = 4.13−1.77+2.31 g cm−3. For GJ 9827 d, we derive Md = 1.45−0.57+0.58 M⊕, Rd = 1.24−0.11+0.11 R⊕, and ρd = 1.51−0.53+0.71 g cm−3. Conclusions. GJ 9827 is one of the few known transiting planetary systems for which the masses of all planets have been determined with a precision better than 30%. This system is particularly interesting because all three planets are close to the limit between super-Earths and sub-Neptunes. The planetary bulk compositions are compatible with a scenario where all three planets formed with similar core and atmosphere compositions, and we speculate that while GJ 9827 b and GJ 9827 c lost their atmospheric envelopes, GJ 9827 d maintained its primordial atmosphere, owing to the much lower stellarirradiation. This makes GJ 9827 one of the very few systems where the dynamical evolution and the atmosphericescape can be studied in detail for all planets, helping us to understand how compact systems form and evolve.


2021 ◽  
Vol 71 (1) ◽  
pp. 279-313
Author(s):  
Gaia Lanfranchi ◽  
Maxim Pospelov ◽  
Philip Schuster

At the dawn of a new decade, particle physics faces the challenge of explaining the mystery of dark matter, the origin of matter over antimatter in the Universe, the apparent fine-tuning of the electroweak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves New Physics at mass scales comparable to that of familiar matter—below the GeV scale but with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and existing data may even provide hints of this possibility. Emboldened by the lessons of the LHC, a vibrant experimental program to discover such physics is underway, guided by a systematic theoretical approach that is firmly grounded in the underlying principles of the Standard Model. We give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs, and we focus in particular on accelerator-based experiments.


Sign in / Sign up

Export Citation Format

Share Document