Early inflation to late-time acceleration in f(G) model

2016 ◽  
Vol 31 (33) ◽  
pp. 1650187
Author(s):  
Malay Krishna Dutta ◽  
Kaushik Sarkar ◽  
B. Modak

We present some solutions in Friedmann–Lemaître–Robertson–Walker (FLRW) spacetime in the modified theory of gravity with a general Gauss–Bonnet (GB) term f(G) and R2 including an ideal fluid. We present evolution of the universe introducing an ansatz without a prior choice of f(G) in one approach, while in other class of model, the solutions are obtained assuming few simple forms of f(G). Some of the solutions show early inflationary expansion, further in one solution the fluctuation of the deceleration parameter q is evident at the end of inflation. In all cases, late-time transition to accelerating universe at redshift z [Formula: see text] 0.7 is realizable.

2010 ◽  
Vol 25 (29) ◽  
pp. 5253-5331 ◽  
Author(s):  
DOMENICO SAPONE

In this paper we review a part of the approaches that have been considered to explain the extraordinary discovery of the late time acceleration of the Universe. We discuss the arguments that have led physicists and astronomers to accept dark energy as the current preferable candidate to explain the acceleration. We highlight the problems and the attempts to overcome the difficulties related to such a component. We also consider alternative theories capable of explaining the acceleration of the Universe, such as modification of gravity. We compare the two approaches and point out the observational consequences, reaching the sad but foresightful conclusion that we will not be able to distinguish between a Universe filled by dark energy or a Universe where gravity is different from General Relativity. We review the present observations and discuss the future experiments that will help us to learn more about our Universe. This is not intended to be a complete list of all the dark energy models but this paper should be seen as a review on the phenomena responsible for the acceleration. Moreover, in a landscape of hardly compelling theories, it is an important task to build simple measurable parameters useful for future experiments that will help us to understand more about the evolution of the Universe.


2017 ◽  
Vol 32 (11) ◽  
pp. 1750046
Author(s):  
Malay Krishna Dutta ◽  
B. Modak

We discuss Noether symmetry approach in the modified theory of gravity with Gauss–Bonnet (GB) interaction-f(G) including an ideal fluid in Friedmann–Lemaître–Robertson–Walker (FLRW) background. It yields functional form of f(G) from the symmetry. The existence of Noether symmetry gives the scale factor in two cases, but these are not satisfied by field equations in general. In another case, the solution of field equations shows late-time transition to an accelerating expansion when matter is dust, however the solution including dust and radiation is always in accelerating era.


2020 ◽  
Vol 35 (36) ◽  
pp. 2050296
Author(s):  
Akash Bose ◽  
Subenoy Chakraborty

The paper deals with cosmology in modified [Formula: see text] gravity theory. With some phenomenological choices for the function [Formula: see text] it is possible to have cosmological solutions describing different phases of the evolution of the Universe for the homogeneous and isotropic Friedmann–Lemaître–Robertson–Walker (FLRW) model. By proper choice of the parameters involved in the function [Formula: see text] and also in the cosmological solutions it is shown that a continuous cosmic evolution starting from the emergent scenario to the present late-time acceleration is possible. Finally thermodynamical analysis of [Formula: see text] gravity is presented.


Pramana ◽  
2010 ◽  
Vol 74 (3) ◽  
pp. 481-489 ◽  
Author(s):  
Narayan Banerjee ◽  
Sudipta Das ◽  
Koyel Ganguly

2017 ◽  
Vol 14 (09) ◽  
pp. 1750124 ◽  
Author(s):  
B. Mishra ◽  
P. K. Sahoo ◽  
Pratik P. Ray

In this paper, we have investigated the anisotropic behavior of the accelerating universe in Bianchi V spacetime in the framework of General Relativity (GR). The matter field we have considered is of two non-interacting fluids, i.e. the usual string fluid and dark energy (DE) fluid. In order to represent the pressure anisotropy, the skewness parameters are introduced along three different spatial directions. To achieve a physically realistic solutions to the field equations, we have considered a scale factor, known as hybrid scale factor, which is generated by a time-varying deceleration parameter. This simulates a cosmic transition from early deceleration to late time acceleration. It is observed that the string fluid dominates the universe at early deceleration phase but does not affect nature of cosmic dynamics substantially at late phase, whereas the DE fluid dominates the universe in present time, which is in accordance with the observations results. Hence, we analyzed here the role of two fluids in the transitional phases of universe with respect to time which depicts the reason behind the cosmic expansion and DE. The role of DE with variable equation of state parameter (EoS) and skewness parameters, is also discussed along with physical and geometrical properties.


2020 ◽  
Vol 17 (07) ◽  
pp. 2050098 ◽  
Author(s):  
Umesh Kumar Sharma ◽  
Shikha Srivastava ◽  
A. Beesham

In this paper, a new form of dark energy, known as Tsallis holographic dark energy (THDE), with IR cutoff as Hubble horizon proposed by Tavayef et al. Tsallis holographic dark energy, Phys. Lett. B 781 (2018) 195 has been explored in Bianchi-III model with the matter. By taking the time subordinate deceleration parameter, the solution of Einstein’s field equation is found. The Universe evolution from earlier decelerated to the current accelerated phase is exhibited by the deceleration parameter acquired in the THDE model. It can be seen that the derived THDE model is related to an accelerating Universe with quintessence ([Formula: see text]). The squared sound speed [Formula: see text] also suggests that the THDE model is classically stable at present. In addition, the quintessence phase of the THDE model is analyzed with swampland conjecture to reformulate the accelerating expansion of the Universe.


2017 ◽  
Vol 14 (06) ◽  
pp. 1750097 ◽  
Author(s):  
Pradyumn Kumar Sahoo ◽  
Parbati Sahoo ◽  
Binaya Kumar Bishi

The objective of this work enclosed with the study of spatially homogeneous anisotropic Bianchi type-I universe in [Formula: see text] gravity (where [Formula: see text] is the Ricci scalar and [Formula: see text] is the trace of stress energy momentum tensor) in two different cases viz. [Formula: see text] and [Formula: see text] with bulk viscosity matter content. In this study, we consider a time varying deceleration parameter (DP), which generates an accelerating universe to obtain the exact solution of the field equations. The physical and kinematical properties of both the models are discussed in detail for the future evolution of the universe. We have explored the nature of WEC, DEC, SEC and energy density for both the cases. We have found that both the models, with bulk viscosity matter component, show an acceleration of the universe. We have also shown that the cosmic jerk parameter is compatible with the three kinematical data sets.


Sign in / Sign up

Export Citation Format

Share Document