scholarly journals Chiral tensor particles in the early Universe — Present status

2017 ◽  
Vol 32 (34) ◽  
pp. 1750187 ◽  
Author(s):  
D. P. Kirilova ◽  
V. M. Chizhov

In this work, an update of the cosmological role and place of the chiral tensor particles in the Universe history is provided. We discuss an extended model with chiral tensor particles. The influence of these particles on the early Universe evolution is studied. Namely, the increase of the Universe expansion rate caused by the additional particles in this extended model is calculated, their characteristic interactions with the particles of the hot Universe plasma are studied and the corresponding times of their creation, scattering, annihilation and decay are estimated for accepted values of their masses and couplings, based on the recent experimental constraints. The period of abundant presence of these particles in the Universe evolution is determined.

1990 ◽  
Vol 43 (2) ◽  
pp. 159
Author(s):  
E Saar

Implications of the observed large scale structure on the physics of the early universe are described. A short review of Soviet work on the subject is given, and the present status of the fractal model of the large scale structure is discussed.


2015 ◽  
Vol 12 (09) ◽  
pp. 1550097 ◽  
Author(s):  
Yuriy A. Portnov

This paper considers the dependence of the Universe expansion rate in the era of radiation domination of the orbital angular momentum of photons filling the Universe. It is shown that the presence of a nonzero orbital angular momentum in photons leads to increase in the rate of expansion. As a consequence, the hypothesis is made that areas of the Universe, having photons with nonzero orbital angular momentum inside them, will cool faster. In these areas the elementary particles will form earlier, compared to the rest of the Universe. Therefore, these areas become the future centers of the primary material inhomogeneity.


Author(s):  
Mohammed B. Al-Fadhli

The Planck Legacy recent release revealed a closed and positively curved early universe with a confidence level greater than 99%. In this study, the Friedmann–Lemaîtree–Robertson–Walker (FLRW) metric is enhanced to model early universe plasma, incorporating its reference curvature radius upon the emission of the cosmic microwave background (CMB) and the reference scale factor of the energy flux. The universe evolution from early plasma is modelled utilising quantised spacetime worldlines, where they revealed both positive and negative solutions implying that matter and antimatter in the plasma could be separated by electromagnetic fields and evolved in opposite directions as distinct sides of the universe, corroborating the CMB dipole anisotropy. The model indicates a nascent hyperbolic expansion is followed by a first phase of decelerating expansion during the first 10 Gyr, and then, a second phase of accelerating expansion. The model theoretically resolves the tension in Hubble parameter measurements, with a predicted density at the phase transition of 1.16. Further, it predicts a final time-reversal phase of rapid spatial contraction leading to a Big Crunch, signalling a cyclic universe. Simulations of the quantised spacetime continuum flux through its travel along the predicted worldlines demonstrated the fast-orbital speed of stars resulting from an external momentum exerted on galaxies via the spatial curvature through imaginary time dimension. These findings indicate that early universe plasma could be separated and evolved into distinct sides, collectively and geometrically influencing the universe evolution.


Author(s):  
Mohammed B. Al-Fadhli

The recent Planck Legacy release confirmed the existence of an enhanced lensing amplitude in the cosmic microwave background (CMB) power spectra, which endorses the positive curvature of the early Universe with a confidence level exceeding 99%. In this study, the pre-existing curvature is incorporated to extend the field equations where the derived wave function of the Universe is utilized to model Universe evolution with reference to the scale factor of the early Universe and its radius of curvature upon the emission of the CMB. The wave function reveals both positive and negative solutions, implying that matter and antimatter of early Universe plasma evolve in opposite directions as distinct Universe sides. The wave function indicates that a nascent hyperbolic expansion is followed by a first phase of decelerating expansion away from early plasma during the first 10 Gyr, and then, a second phase of accelerating expansion in reverse directions, whereby both Universe sides free-fall towards each other under gravitational acceleration. Simulations of the predicted conformal curvature evolution demonstrate the fast orbital speed of outer stars owing to the external fields exerted on galaxies as they travel through conformally curved space-time. Finally, the wave function predicts an eventual time-reversal phase comprising rapid spatial contraction that culminates in a Big Crunch, signalling a cyclic Universe. These findings reveal that early plasma could have separated and evolved into distinct sides that collectively and geometrically influencing the Universe evolution, physically explanting the effects attributed to dark matter and energy.


2021 ◽  
Vol 133 (6) ◽  
pp. 69002
Author(s):  
Edésio M. Barboza ◽  
Everton M. C. Abreu ◽  
Jorge Ananias Neto

1998 ◽  
Vol 13 (05) ◽  
pp. 347-351 ◽  
Author(s):  
MURAT ÖZER

We attempt to treat the very early Universe according to quantum mechanics. Identifying the scale factor of the Universe with the width of the wave packet associated with it, we show that there cannot be an initial singularity and that the Universe expands. Invoking the correspondence principle, we obtain the scale factor of the Universe and demonstrate that the causality problem of the standard model is solved.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Lorenzo Calibbi ◽  
Francesco D’Eramo ◽  
Sam Junius ◽  
Laura Lopez-Honorez ◽  
Alberto Mariotti

Abstract Displaced vertices at colliders, arising from the production and decay of long-lived particles, probe dark matter candidates produced via freeze-in. If one assumes a standard cosmological history, these decays happen inside the detector only if the dark matter is very light because of the relic density constraint. Here, we argue how displaced events could very well point to freeze-in within a non-standard early universe history. Focusing on the cosmology of inflationary reheating, we explore the interplay between the reheating temperature and collider signatures for minimal freeze-in scenarios. Observing displaced events at the LHC would allow to set an upper bound on the reheating temperature and, in general, to gather indirect information on the early history of the universe.


Universe ◽  
2021 ◽  
Vol 7 (8) ◽  
pp. 276
Author(s):  
Muhammad Zahid Mughal ◽  
Iftikhar Ahmad ◽  
Juan Luis García Guirao

In this review article, the study of the development of relativistic cosmology and the introduction of inflation in it as an exponentially expanding early phase of the universe is carried out. We study the properties of the standard cosmological model developed in the framework of relativistic cosmology and the geometric structure of spacetime connected coherently with it. The geometric properties of space and spacetime ingrained into the standard model of cosmology are investigated in addition. The big bang model of the beginning of the universe is based on the standard model which succumbed to failure in explaining the flatness and the large-scale homogeneity of the universe as demonstrated by observational evidence. These cosmological problems were resolved by introducing a brief acceleratedly expanding phase in the very early universe known as inflation. The cosmic inflation by setting the initial conditions of the standard big bang model resolves these problems of the theory. We discuss how the inflationary paradigm solves these problems by proposing the fast expansion period in the early universe. Further inflation and dark energy in fR modified gravity are also reviewed.


Sign in / Sign up

Export Citation Format

Share Document