FORMAL ANALOGIES BETWEEN GRAVITATION AND ELECTRODYNAMICS

2009 ◽  
Vol 24 (24) ◽  
pp. 4589-4605 ◽  
Author(s):  
E. GOULART ◽  
F. T. FALCIANO

We develop a theoretical framework that allows us to compare electromagnetism with gravitation in a fully covariant way. This new scenario does not rely on any kind of approximation nor associate objects with different operational meaning as it is sometimes done in the literature. We construct the electromagnetic analogue to Riemann and Weyl tensors and develop the equations of motion for these objects. In particular, we are able to identify precisely how and in what conditions gravity can be mapped to electrodynamics. As a consequence, many of the geometrical tools of General Relativity can be applied to electromagnetism and vice versa. We hope our results would shed new light in the nature of electromagnetic and gravitational theories.

Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1430
Author(s):  
Fernando Barbero ◽  
Marc Basquens ◽  
Valle Varo ◽  
Eduardo J. S. Villaseñor

The Hamiltonian description of mechanical or field models defined by singular Lagrangians plays a central role in physics. A number of methods are known for this purpose, the most popular of them being the one developed by Dirac. Here, we discuss other approaches to this problem that rely on the direct use of the equations of motion (and the tangency requirements characteristic of the Gotay, Nester and Hinds method), or are formulated in the tangent bundle of the configuration space. Owing to its interesting relation with general relativity we use a concrete example as a test bed: an extension of the Pontryagin and Husain–Kuchař actions to four dimensional manifolds with boundary.


Author(s):  
Nathalie Deruelle ◽  
Jean-Philippe Uzan

This chapter embarks on a study of the two-body problem in general relativity. In other words, it seeks to describe the motion of two compact, self-gravitating bodies which are far-separated and moving slowly. It limits the discussion to corrections proportional to v2 ~ m/R, the so-called post-Newtonian or 1PN corrections to Newton’s universal law of attraction. The chapter first examines the gravitational field, that is, the metric, created by the two bodies. It then derives the equations of motion, and finally the actual motion, that is, the post-Keplerian trajectories, which generalize the post-Keplerian geodesics obtained earlier in the chapter.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


2009 ◽  
Vol 5 (S261) ◽  
pp. 56-61 ◽  
Author(s):  
Vladik Kreinovich

AbstractBy the early 1970s, the improved accuracy of astrometric and time measurements enabled researchers not only to experimentally compare relativistic gravity with the Newtonian predictions, but also to compare different relativistic gravitational theories (e.g., the Brans-Dicke Scalar-Tensor Theory of Gravitation). For this comparison, Kip Thorne and others developed the Parameterized Post-Newtonian Formalism (PPN), and derived the dependence of different astronomically observable effects on the values of the corresponding parameters.Since then, all the observations have confirmed General Relativity. In other words, the question of which relativistic gravitation theory is in the best accordance with the experiments has been largely settled. This does not mean that General Relativity is the final theory of gravitation: it needs to be reconciled with quantum physics (into quantum gravity), it may also need to be reconciled with numerous surprising cosmological observations, etc. It is, therefore, reasonable to prepare an extended version of the PPN formalism, that will enable us to test possible quantum-related modifications of General Relativity.In particular, we need to include the possibility of violating fundamental principles that underlie the PPN formalism but that may be violated in quantum physics, such as scale-invariance, T-invariance, P-invariance, energy conservation, spatial isotropy violations, etc. In this paper, we present the first attempt to design the corresponding extended PPN formalism, with the (partial) analysis of the relation between the corresponding fundamental physical principles.


It is shown how to obtain, within the general theory of relativity, equations of motion for two oscillating masses at the ends of a spring of given law of force. The method of Einstein, Infeld & Hoffmann is used, and the force in the spring is represented by a stress singularity. The detailed calculations are taken to the Newtonian order.


2000 ◽  
Vol 09 (01) ◽  
pp. 13-34 ◽  
Author(s):  
GEN YONEDA ◽  
HISA-AKI SHINKAI

Hyperbolic formulations of the equations of motion are essential technique for proving the well-posedness of the Cauchy problem of a system, and are also helpful for implementing stable long time evolution in numerical applications. We, here, present three kinds of hyperbolic systems in the Ashtekar formulation of general relativity for Lorentzian vacuum spacetime. We exhibit several (I) weakly hyperbolic, (II) diagonalizable hyperbolic, and (III) symmetric hyperbolic systems, with each their eigenvalues. We demonstrate that Ashtekar's original equations form a weakly hyperbolic system. We discuss how gauge conditions and reality conditions are constrained during each step toward constructing a symmetric hyperbolic system.


2021 ◽  
pp. 2150101
Author(s):  
S. A. Paston

We study the possibility to explain the mystery of the dark matter (DM) through the transition from General Relativity to embedding gravity. This modification of gravity, which was proposed by Regge and Teitelboim, is based on a simple string-inspired geometrical principle: our spacetime is considered here as a four-dimensional surface in a flat bulk. We show that among the solutions of embedding gravity, there is a class of solutions equivalent to solutions of GR with an additional contribution of non-relativistic embedding matter, which can serve as cold DM. We prove the stability of such type of solutions and obtain an explicit form of the equations of motion of embedding matter in the non-relativistic limit. According to them, embedding matter turns out to have a certain self-interaction, which could be useful in the context of solving the core-cusp problem that appears in the [Formula: see text]CDM model.


2018 ◽  
Vol 27 (06) ◽  
pp. 1841012 ◽  
Author(s):  
Victor Berezin ◽  
Vyacheslav Dokuchaev ◽  
Yury Eroshenko

The spherically symmetric thin shells are the nearest generalizations of the point-like particles. Moreover, they serve as the simple sources of the gravitational fields both in General Relativity and much more complex quadratic gravity theories. We are interested in the special and physically important case when all the quadratic in curvature tensor (Riemann tensor) and its contractions (Ricci tensor and scalar curvature) terms are present in the form of the square of Weyl tensor. By definition, the energy–momentum tensor of the thin shell is proportional to Diracs delta-function. We constructed the theory of the spherically symmetric thin shells for three types of gravitational theories with the shell: (1) General Relativity; (2) Pure conformal (Weyl) gravity where the gravitational part of the total Lagrangian is just the square of the Weyl tensor; (3) Weyl–Einstein gravity. The results are compared with these in General Relativity (Israel equations). We considered in detail the shells immersed in the vacuum. Some peculiar properties of such shells are found. In particular, for the traceless ([Formula: see text] massless) shell, it is shown that their dynamics cannot be derived from the matching conditions and, thus, is completely arbitrary. On the contrary, in the case of the Weyl–Einstein gravity, the trajectory of the same type of shell is completely restored even without knowledge of the outside solution.


2010 ◽  
Vol 19 (14) ◽  
pp. 2345-2351 ◽  
Author(s):  
AHARON DAVIDSON ◽  
ILYA GURWICH

Hawking–Bekenstein entropy formula seems to tell us that no quantum degrees of freedom can reside in the interior of a black hole. We suggest that this is a consequence of the fact that the volume of any interior sphere of finite surface area simply vanishes. Obviously, this is not the case in general relativity. However, we show that such a phenomenon does occur in various gravitational theories which admit a spontaneously induced general relativity. In such theories, due to a phase transition (one-parameter family degenerates) which takes place precisely at the would-have-been horizon, the recovered exterior Schwarzschild solution connects, by means of a self-similar transition profile, with a novel "hollow" interior exhibiting a vanishing spatial volume and a locally varying Newton constant. This constitutes the so-called "hollowgraphy" driven holography.


Sign in / Sign up

Export Citation Format

Share Document