SPONTANEOUS CP VIOLATION IN A TWO GENERATION SU(2)L × SU(2)R × U(1)B − L × U(1)H MODEL

1993 ◽  
Vol 08 (12) ◽  
pp. 2119-2133
Author(s):  
SASWATI SARKAR ◽  
ASIM K. RAY ◽  
AMBAR GHOSAL ◽  
DEBASIS BHOWMICK ◽  
KRISHNANATH BANDYOPADHYAY

It is shown that spontaneous CP violation can occur in a two generation left–right symmetric horizontal model if there are two Higgs bi-doublets with the same horizontal hypercharge quantum number. The contributions to the KL − KS mass difference (Δm) and CP violating effects (∊, ∊′/∊, Dn) to the box and tree level diagrams are discussed to demonstrate that the experimental values of Δm and ∊ can be explained with suitable choice of the model parameters.

1992 ◽  
Vol 07 (34) ◽  
pp. 3179-3186 ◽  
Author(s):  
AMBAR GHOSAL ◽  
ASIM K. RAY ◽  
SASWATI SARKAR

We discuss a two-generation left-right symmetric model with two Higgs bi-doublets and a discrete symmetry to show that spontaneous CP violation arises as a result of soft breaking of the discrete symmetry. The contributions to the CP violation parameter ε in the [Formula: see text] transition come from the box diagrams due to WL-WR exchanges as well as from the mixing of the real and imaginary parts of the flavor changing neutral Higgs at the tree level and both contributions depend on the relative phase difference between the vacuum expectation values (vevs) of the relevant neutral Higgs scalars. Other CP violating effects in the model are consistent with their experimental values for the appropriate choice of the model parameters. The extension of the model to the realistic case of three generations of fermions does not appreciably change the phenomenology of the model.


Author(s):  
Katia Lucchesi Cavalca ◽  
Sérgio Junichi Idehara ◽  
Franco Giuseppe Dedini ◽  
Robson Pederiva

Abstract The present paper proposes the use of non linear model updating applying unrestricted optimization method, in order to obtain a methodology, which allows the calibration of mathematical models in rotating systems. An experimental set up for this purpose consists of a symmetric rotor, on a rigid foundation supported by two hidrodynamic cylindrical bearings and with a central disk of considerable mass, working as na unbalancing excitation force. Once the numeric and experimental values are obtained, error vectors are defined, which are the minimization parameters, through the variation of the numeric model parameters. The method presented satisfactory results, as it was able to calibrate the mathematical model, and then to obtain reliable responses for the physical system studied. The research also presents a contribution for the rotating machine desing area as it presents a relatively simple methodology on the updating and revalidation of computacional models for machines and structures.


2020 ◽  
Vol 239 ◽  
pp. 01010
Author(s):  
Adina Olacel ◽  
Catalin Borcea ◽  
Marian Boromiza ◽  
Philippe Dessagne ◽  
Gregoire Henning ◽  
...  

A 54Fe(n, n'γ) cross section measurement was performed at the Geel Electron LINear Accelerator of EC-JRC, Geel using the Gamma Array for Inelastic Neutron Scattering spectrometer and a 235U fission chamber for flux normalization. The experimental results are presented in comparison with talys 1.9 default and tuned calculations. The tuned calculation, implying modifications of the optical model parameters, improved significantly the description of the experimental values and led to interesting conclusions regarding the interaction of the 54Fe nucleus with neutrons. Since the results of these calculations were already presented extensively in a dedicated paper, the present article focuses on details related to the experimental particularities and data analysis procedure.


1997 ◽  
Vol 12 (24) ◽  
pp. 4411-4424 ◽  
Author(s):  
Tae Hoon Lee ◽  
Dae Sung Hwang

We study the charged and the neutral current interactions of quarks in an SU (3)L × U (1)X electroweak model. Based on the assumption that u-type quarks coincide with their mass eigenstates, we obtain a new mixing angle θ′ and another CP violating phase δ′ in the extra heavy quark sector besides the usual Kobayashi–Maskawa mixing matrix. This new phase δ′ does not effect a change in the mass matrix elements of the [Formula: see text] systems when θ′ is small, but extra heavy quarks and gauge bosons give rise to additional contribution to the real part of the off-diagonal mass matrix elements and then the CP violation parameter ε is modified. By requiring that the tree level FCNC does not have an important effect on the [Formula: see text] and [Formula: see text] mixings in this model, we obtain a new lower bound on the mass of the extra heavy neutral gauge boson as 1.8 TeV.


2007 ◽  
Vol 16 (05) ◽  
pp. 1373-1381 ◽  
Author(s):  
TEPPEI BABA

The μ - τ symmetry can reproduce the consistent results with experimental data of θ13, and θ23 (θ13, and θ23 respectively denote the νe - ντ, and νμ - ντ, mixing angles). However, we can not address the issue of the leptonic CP violation in μ - τ symmetric models. So we add the μ - τ symmetry breaking part to include the CP violation. We characterize leptonic CP violation in terms of three phases, where one is conventional phase δ and others are additional phases ρ and γ. These δ, ρ and γ are, respectively, the phases of νe - ντ, νe - νμ and νμ - ντ mixings. The ρ and γ are redundant but the effect of ρ remains in the leptonic CP violation which is characterized by δ + ρ. The δ arises from the μ - τ symmetry breaking part of the Meμ and Meτ while ρ arises from of μ - τ symmetric part of the Meμ and Meτ, where Mij stands for ij (i,j = e,μ,τ) element of M(= [Formula: see text] for Mν being a flavor neutrino mass matrix). Moreover, θ23 can be exactly estimated to be: [Formula: see text] ( sin θ ∝ sin θ13 cos (δ + ρ)[Formula: see text], sin ϕ ∝ Mμμ - Mττ, where [Formula: see text] is the solar neutrino mass difference squared). The conditions of maximal atmospheric neutrino mixing are given by [Formula: see text] and Mμμ = Mττ,which indicate maximal Dirac CP violation.


2015 ◽  
Vol 39 ◽  
pp. 1560101
Author(s):  
Stanislav Dubnicka ◽  
Anna-Zuzana Dubnickova

It is demonstrated that for a determination of the mass difference of the [Formula: see text] and [Formula: see text] mesons an explicit theoretical formula to be derived by an assumption of the CP-conservation has been used by CPLEAR Collaboration in a fitting of the time-dependent CPLEAR data on ASYMMETRY. So, in such procedure the mass difference [Formula: see text] of the [Formula: see text] and [Formula: see text] mesons has been found and in no case [Formula: see text] one as in this case the CP-violation has to be considered.


Author(s):  
Zhenyu Zhao ◽  
Hong Li ◽  
Guanlun Sun ◽  
Xinhui Tang ◽  
Haoyu Wu ◽  
...  

Microwave (MW) can selectively interact with polar molecules in homogeneous mixture liquid solution and therefore change their relative volatility, which has been previously observed in experimental results for various binary mixtures. However, the lack of theoretical analysis and quantitative modeling hinders the further development of novel MW-assisted separation techniques. Hence, this study derived a novel dimensionless number ZMW based on the assumption of molecular irradiation to explore the effect of the dielectric and thermodynamic properties of materials as well as MW field intensity on the microwave-induced relative volatility change (MIRVC). Furthermore, a quantitative correlation between MIRVC and ZMW was established, whose model parameters were determined by fitting experimental data under MW irradiation. The correlation was also utilized to predict MIRVC in the previously published literature and the error range between predictive values and experimental values was within ± 6%, indicating great validity of the proposed quantitative correlation.


Forests ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1778
Author(s):  
Wancai Zhu ◽  
Zhaogang Liu ◽  
Weiwei Jia ◽  
Dandan Li

Taking 1735 Pinus koraiensis knots in Mengjiagang Forest Farm plantations in Jiamusi City, Heilongjiang Province as the research object, a dynamic tree height, effective crown height, and crown base height growth model was developed using 349 screened knots. The Richards equation was selected as the basic model to develop a crown base height and effective crown height nonlinear mixed-effects model considering random tree-level effects. Model parameters were estimated with the non-liner mixed effect model (NLMIXED) Statistical Analysis System (SAS) module. The akaike information criterion (AIC), bayesian information criterion (BIC), −2 Log likelihood (−2LL), adjusted coefficient (Ra2), root mean square error (RMSE), and residual squared sum (RSS) values were used for the optimal model selection and performance evaluation. When tested with independent sample data, the mixed-effects model tree effects-considering outperformed the traditional model regarding their goodness of fit and validation; the two-parameter mixed-effects model outperformed the one-parameter model. Pinus koraiensis pruning times and intensities were calculated using the developed model. The difference between the effective crown and crown base heights was 1.01 m at the 15th year; thus, artificial pruning could occur. Initial pruning was performed with a 1.01 m intensity in the 15th year. Five pruning were required throughout the young forest period; the average pruning intensity was 1.46 m. The pruning interval did not differ extensively in the half-mature forest period, while the intensity decreased significantly. The final pruning intensity was only 0.34 m.


2021 ◽  
Vol 17 (12) ◽  
pp. e1009718
Author(s):  
Zhuo-Cheng Xiao ◽  
Kevin K. Lin ◽  
Lai-Sang Young

Constraining the many biological parameters that govern cortical dynamics is computationally and conceptually difficult because of the curse of dimensionality. This paper addresses these challenges by proposing (1) a novel data-informed mean-field (MF) approach to efficiently map the parameter space of network models; and (2) an organizing principle for studying parameter space that enables the extraction biologically meaningful relations from this high-dimensional data. We illustrate these ideas using a large-scale network model of the Macaque primary visual cortex. Of the 10-20 model parameters, we identify 7 that are especially poorly constrained, and use the MF algorithm in (1) to discover the firing rate contours in this 7D parameter cube. Defining a “biologically plausible” region to consist of parameters that exhibit spontaneous Excitatory and Inhibitory firing rates compatible with experimental values, we find that this region is a slightly thickened codimension-1 submanifold. An implication of this finding is that while plausible regimes depend sensitively on parameters, they are also robust and flexible provided one compensates appropriately when parameters are varied. Our organizing principle for conceptualizing parameter dependence is to focus on certain 2D parameter planes that govern lateral inhibition: Intersecting these planes with the biologically plausible region leads to very simple geometric structures which, when suitably scaled, have a universal character independent of where the intersections are taken. In addition to elucidating the geometry of the plausible region, this invariance suggests useful approximate scaling relations. Our study offers, for the first time, a complete characterization of the set of all biologically plausible parameters for a detailed cortical model, which has been out of reach due to the high dimensionality of parameter space.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050223
Author(s):  
V. V. Vien

In this work, we suggest a renormalizable [Formula: see text] extension of the Standard Model with [Formula: see text] symmetry in which the observed fermion mass and mixing pattern is consistent with the experimental values given in Ref. 1 at the tree-level. The neutrino mass ordering and the tiny neutrino masses are induced by the type-I seesaw mechanism. The effective neutrino mass parameters are predicted to be [Formula: see text], [Formula: see text] for NO and [Formula: see text], [Formula: see text] for IO which are well consistent with the recent experimental data. The quark masses are in good agreement while the quark mixing matrix has a little difference with the experimental data taken from Ref. 1 and the Cabibbo angle [Formula: see text] is related to the model parameter [Formula: see text] by the formula [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document