CRITICAL BEHAVIOUR OF FERROELECTRIC THIN FILMS

2002 ◽  
Vol 16 (03) ◽  
pp. 473-480 ◽  
Author(s):  
JULIA M. WESSELINOWA ◽  
STEFFEN TRIMPER

Based on an Ising model in a transverse field (TIM) and using a Green's function formalism the critical exponents of the polarization β and of the longitudinal susceptibility γ are calculated for a ferroelectric thin film consisting of N layers. The exponents depends on the number of layers in a significant manner. Whereas for N=3 layers the exponents are β=0.131 and γ=1.739 there is a change over to β=0.315 and γ=1.239 in case of N=30. The datas are in a good agreement with predictions for 2D and 3D Ising systems. Using scaling laws other exponents like α, δ, η and ν are obtained, too.

2016 ◽  
Vol 23 (03) ◽  
pp. 1650010 ◽  
Author(s):  
LIAN CUI ◽  
HAIYING CUI ◽  
CHUNMEI WU ◽  
GUIHUA YANG ◽  
ZELONG HE ◽  
...  

In this paper, frequency, temperature, film thickness, surface effects, and various parameters dependence of dielectric susceptibility is investigated theoretically for ferroelectric thin films by the modified Landau theory under an AC applied field. The dielectric susceptibility versus AC applied field shows butterfly-shaped behavior, and depends strongly on the frequency and amplitude of the field and temperature. Our study shows that the existence of the surface transition layer can depress the dielectric susceptibility of a ferroelectric thin film. These results are well consistent with the phenomena reported in experiments.


RSC Advances ◽  
2019 ◽  
Vol 9 (13) ◽  
pp. 7575-7586 ◽  
Author(s):  
Le Van Lich ◽  
Van-Hai Dinh

New phase field model to reveal switching mechanism of needle domain in compositionally graded ferroelectric thin film.


2000 ◽  
Vol 655 ◽  
Author(s):  
Masanori Okuyama ◽  
Toshiyuki Nakaiso ◽  
Minoru Noda

AbstractSr2(Ta1划x, Nbx)2O7(STN) ferroelectric thin films have been prepared on SiO2/Si(100) substrates by the pulsed laser deposition (PLD) method. Preferential (110) and (151)-oriented STN thin films are deposited at a low temperature of 600°C in N2O ambient gas at 0.08 Torr. A counterclockwise C-V hysteresis was observed in the metal-ferroelectric-insulator-semiconductor (MFIS) structure using Sr2(Ta0.7, Nb0.3)2O7 on SiO2/Si deposited at 600°C. Memory window in the C-V curve spreads symmetrically towards both positive and negative directions when applied voltage increases and the window does not change in sweep rates ranging from 0.1 to 4.0×103 V/s. The C-V curve of the MFIS structure does not degrade after 1010 cycles of polarization reversal. The gate retention time is about 3.0×103 sec when the voltages and time of write pulse are ±15V and 1.0 sec, respectively, and hold bias was -0.5 V.


1983 ◽  
Vol 10 (2-3) ◽  
pp. 157-162 ◽  
Author(s):  
J. P. Ramy ◽  
R. Schnitzler ◽  
C. Thebault

In a previous paper,1we showed, with a microwave quality factor (Q) measurement, that in the X band and with alumina substrates, thick film losses are not worse than thin film losses when the inks are screened then etched, and when they have copper oxide as adhesive layer and gold or copper as metal powder.Here, we extend this study to show that, our experimental results being in good agreement with theory, a simple D.C. resistivity measurement is sufficient to characterize these MIC'S metallizations and is as suitable as a microwave Q measurement. We also show that the nature of the ground plane cannot be neglected.


2010 ◽  
Vol 636-637 ◽  
pp. 1065-1072 ◽  
Author(s):  
Lilian Marques Silva ◽  
Roberto R. Lima ◽  
E.R. Fachini ◽  
E.W. Simões ◽  
E. Pecoraro ◽  
...  

The aim of this work was the production of a large surface area of hexamethyldisilazane (HMDS) plasma-deposited thin films and their applicability in a miniaturized structure useful for preliminary analysis of organic mixtures. The HMDS plasma films were produced with different surface areas and morphologies, and all films adsorbed polar and non-polar organic compounds. A low cost miniaturized structure was manufactured in glass using a Milling cutter and covered with HMDS plasma films. Good agreement was observed between simulation and experimental results on those microstructures. The observed different performance between pure and mixtures of organic compound samples suggests that the proposed system is a simple setup that could be useful for rough analysis of a fuel.


1996 ◽  
Vol 433 ◽  
Author(s):  
Jianguo Zhu ◽  
Meng Chen ◽  
Wenbing Peng ◽  
Fahua Lan ◽  
E.V. Sviridov ◽  
...  

AbstractThe fabrication methods of ferroelectric (FE) thin films have received special attention in recent years because of the needs of FE thin films integrated with semiconductor devices. Rapid thermal processing (RTP) has developed in fabrication of FE thin films because it can reduce processing temperature and time duration, and it also improves the properties of FE thin films compatible with semiconductor devices. The thin film samples used were prepared by a multi-ion-beam reactive cosputtering system (MIBRECS) at room temperature. The samples were then subjected to a post-deposition annealing in a RTP system. It was found that PbTiO3 (PT) thin film could grow on amorphous or polycrystal interfacial layer and the PT thin films annealed by RTP showed the prefered [110] and [100] textures. The effect of interfacial layer on the crystallization and microstructure of the films was also discussed.


2004 ◽  
Vol 833 ◽  
Author(s):  
Ali Mahmud ◽  
T. S. Kalkur ◽  
N. Cramer

ABSTRACTPerovskite ferroelectric thin films in the paraelectric state exhibit outstanding dielectric properties, even at high frequencies (>1 GHz). The tunable dielectric constant of ferroelectric thin films can be used to design frequency and phase agile components. High dielectric constant thin film ferroelectric materials in the paraelectric state have received enormous attention due to their feasibility in applications such as decoupling capacitors and tunable microwave capacitors; the latter application has been fueled by the recent explosion in wireless and satellite communications. This paper reportsBa0.96Ca 0.04Ti0.84Zr0.16O3 (BCTZ) thin films that were deposited on Pt electrodes using radio frequency magnetron sputtering at a low (450 °C) substrate temperature. Sputtered thin film BCTZ at low substrate temperature is compatible with conventional integrated circuit technology. The structural characterization of the deposited films was performed by x-ray diffraction. The electrical characterization of the films was achieved by capacitance-voltage, current-voltage, and S-parameter (via vector network analyzer) measurements. In addition, the effect of post annealing on the deposited films was investigated. A detailed understanding of both their processing and material properties is discussed for successful implementation in high frequency applications.


1993 ◽  
pp. 185-211
Author(s):  
J. F. Scott ◽  
C. A. Araujo ◽  
L. D. McMillan

1996 ◽  
Vol 433 ◽  
Author(s):  
S. Trolier-Mckinstry ◽  
C. A. Randall ◽  
J. P. Maria ◽  
C. Theis ◽  
D. G. Schlom ◽  
...  

AbstractFerroelectric thin films typically differ from bulk ceramics in terms of both the average grain size and the degree of stress imposed on the film by the substrate. Studies on bulk ceramics have demonstrated that the number of domain variants within grains depends on the grain size for sizes <˜lμm. This can diminish the poling efficiency of the material. Since most thin films show primary grain sizes well below a micron, similar effects should be observed in films. In addition, since the perovskite ferroelectrics contain ferroelastic as well as ferroelectric domains, it seems clear that stress in thin films may markedly alter the degree to which domain walls contribute to the observed properties. In this paper, the relative importance of these factors are discussed for several types of ferroelectric thin films. Films have been prepared by pulsed laser deposition, magnetron sputtering, and by sol-gel processing. It has been found that epitaxial BaTiO3 films are ferroelectric at 77K down to thicknesses as low as ˜ 60nm. Data on the low and high field electrical properties are reported as a function of temperature, the film crystallinity, and film thickness for representative perovskite films.


Sign in / Sign up

Export Citation Format

Share Document