Development of an End-Effector for Mitigation of Collisions

2021 ◽  
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts and is able to protect the robot from impulsive forces. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the end-effector is investigated with the aid of numerical simulations. The effect of design parameters and the operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces.

2021 ◽  
pp. 1-33
Author(s):  
Domenico Tommasino ◽  
Matteo Bottin ◽  
Giulio Cipriani ◽  
Alberto Doria ◽  
Giulio Rosati

Abstract In robotics the risk of collisions is present both in industrial applications and in remote handling. If a collision occurs, the impact may damage both the robot and external equipment, which may result in successive imprecise robot tasks or line stops, reducing robot efficiency. As a result, appropriate collision avoidance algorithms should be used or, if it is not possible, the robot must be able to react to impacts reducing the contact forces. For this purpose, this paper focuses on the development of a special end-effector that can withstand impacts. It is able to protect the robot from impulsive forces caused by collisions of the end-effector, but it has no effect on possible collisions between the links and obstacles. The novel end-effector is based on a bi-stable mechanism that decouples the dynamics of the end-effector from the dynamics of the robot. The intrinsically non-linear behavior of the endeffector is investigated with the aid of numerical simulations. The effect of design parameters and operating conditions are analyzed and the interaction between the functioning of the bi-stable mechanism and the control system is studied. In particular, the effect of the mechanism in different scenarios characterized by different robot velocities is shown. Results of numerical simulations assess the validity of the proposed end-effector, which can lead to large reductions in impact forces. Numerical results are validated by means of specific laboratory tests.


Author(s):  
S. Eshati ◽  
M. F. Abdul Ghafir ◽  
P. Laskaridis ◽  
Y. G. Li

This paper investigates the relationship between design parameters and creep life consumption of stationary gas turbines using a physics based life model. A representative thermodynamic performance model is used to simulate engine performance. The output from the performance model is used as an input to the physics based model. The model consists of blade sizing model which sizes the HPT blade using the constant nozzle method, mechanical stress model which performs the stress analysis, thermal model which performs thermal analysis by considering the radial distribution of gas temperature, and creep model which using the Larson-miller parameter to calculate the lowest blade creep life. The effect of different parameters including radial temperature distortion factor (RTDF), material properties, cooling effectiveness and turbine entry temperatures (TET) is investigated. The results show that different design parameter combined with a change in operating conditions can significantly affect the creep life of the HPT blade and the location along the span of the blade where the failure could occur. Using lower RTDF the lowest creep life is located at the lower section of the span, whereas at higher RTDF the lowest creep life is located at the upper side of the span. It also shows that at different cooling effectiveness and TET for both materials the lowest blade creep life is located between the mid and the tip of the span. The physics based model was found to be simple and useful tool to investigate the impact of the above parameters on creep life.


2020 ◽  
pp. 146808742095133 ◽  
Author(s):  
Konstantinos Bardis ◽  
Panagiotis Kyrtatos ◽  
Guoqing Xu ◽  
Christophe Barro ◽  
Yuri Martin Wright ◽  
...  

Lean-burn gas engines equipped with an un-scavenged prechamber have proven to reduce nitrogen oxides (NOx) emissions and fuel consumption, while mitigating combustion cycle-to-cycle fluctuations and unburned hydrocarbon (UHC) emissions. However, the performance of a prechamber gas engine is largely dependent on the prechamber design, which has to be optimised for the particular main chamber geometry and the foreseen engine operating conditions. Optimisation of such complex engine components relies partly on computationally efficient simulation tools, such as quasi and zero-dimensional models, since extensive experimental investigations can be costly and time-consuming. This article presents a newly developed quasi-dimensional (Q-D) combustion model for un-scavenged prechamber gas engines, which is motivated by the need for reliable low order models to optimise the principle design parameters of the prechamber. Our fundamental aim is to enhance the predictability and robustness of the proposed model with the inclusion of the following: (i) Formal derivation of the combustion and flow submodels via reduction of the corresponding three-dimensional models. (ii) Individual validation of the various submodels. (iii) Combined use of numerical simulations and experiments for the model validation. The resulting model shows very good agreement with the numerical simulations and the experiments from two different engines with various prechamber geometries using a set of fixed calibration parameters.


2002 ◽  
Vol 124 (2) ◽  
pp. 293-300 ◽  
Author(s):  
Saim Dinc ◽  
Mehmet Demiroglu ◽  
Norman Turnquist ◽  
Jason Mortzheim ◽  
Gayle Goetze ◽  
...  

Advanced seals have been applied to numerous turbine machines over the last decade to improve the performance and output. Industrial experiences have shown that significant benefits can be attained if the seals are designed and applied properly. On the other hand, penalties can be expected if brush seals are not designed correctly. In recent years, attempts have been made to apply brush seals to more challenging locations with high speed (>400 m/s), high temperature (>650 °C), and discontinuous contact surfaces, such as blade tips in a turbine. Various failure modes of a brush seal can be activated under these conditions. It becomes crucial to understand the physical behavior of a brush seal under the operating conditions, and to be capable of quantifying seal life and performance as functions of both operating parameters and seal design parameters. Design criteria are required for different failure modes such as stress, fatigue, creep, wear, oxidation etc. This paper illustrates some of the most important brush seal design criteria and the trade-off of different design approaches.


2003 ◽  
Vol 125 (2) ◽  
pp. 414-421 ◽  
Author(s):  
R. J. Stango ◽  
H. Zhao ◽  
C. Y. Shia

Brush seals have proven to be an attractive alternative to labyrinth seals for turbomachinery applications. This innovation in seal technology utilizes both the high temperature capability of special-alloy wire and the flexural adaptability of fibers to accommodate a wide range of operating conditions that are encountered during service. The effectiveness of the seal is principally derived from the bristles ability to endure forces imparted by both the fluid and shaft, and yet maintain contact between the filament tips and the surface of the rotor. Consequently, contact forces generated along the interface of the fiber tip and rotor are an important consideration for both the design and performance of the rotor-seal assembly. This paper focuses on evaluating brush seal forces that arise along the surface of the rotor due to the dimensional disparity or interference between the rotor-fiber. Filament tip contact forces are computed on the basis of an in-plane, large deformation mechanics analysis of a cantilever beam, and validation of the model is assessed by using an electronic balance for measuring the shear and normal force exerted by a bristle tip onto a flat, hardened surface. Formulation of the mechanics problem is briefly reviewed, and includes the effect of Coulombic friction at the interface of the fiber tip and rotor. Filament contact force is used as a basis for computing bearing stress along the fiber-rotor interface. Results are reported for a range of brush seal design parameters in order to provide a better understanding of the role that seal geometry, friction, and bristle flexural rigidity play in generating rotor contact force.


Author(s):  
Riadh Chaari ◽  
Fathi Djemal ◽  
Fakher Chaari ◽  
Mohamed Slim Abbes ◽  
Mohamed Haddar

Impact dampers are efficient in many industrial applications with a wide range of frequencies. An experimental analysis of the impact damping of spherical balls is investigated to simplify the particle impact damping design and improve the vibration suppression. The objective of the study is to analyze some of the design parameters of impact damper using spherical balls. The experimental investigation consists to test the effect of the ball size for each mass level, the number of balls for each size level and different exciting force levels on vibrations of the main structure. The parametric study provided useful information to understand and optimize Particle Impact Damping design.


Author(s):  
Lennard Helmers ◽  
Jens Klingmann

Steady flow in axial one-stage turbines is assessed numerically and experimentally. The simulations are performed on coarse meshes using a standard numerical approach (3D, steady state, kε-turbulence model, wall function at solid boundaries). In order to allow for conclusions drawn from these rapid numerical studies, the approach was compared with an explicit LDA (Laser Doppler anemometry) mapping of the velocity field downstream the rotor on a representative turbine stage. A two-component LDA system allowed for measurements of axial and tangential velocity components at varying depth (radius) in the flow channel, Measurements thus correspond to a full plane at constant axial position in the rotating frame of reference of the rotor. Comparison between LDA velocity mapping and CFD results shows good agreement. A series of subsequent simulations is thus used to judge the impact of varied blade/stage design parameters. Two turbine layouts are defined for identical operating conditions and shaft power. The flow in the unshrouded rotor blade row is analyzed for the influence of varying tip clearance size and the dependency on stage velocity triangles. – Known correlations for tip clearance losses (typically used in mean line predictions) are used, though the blade row geometry considered is beyond the limits the correlations are intended for. The absolute loss level found in CFD simulations differs significantly from what is expected when using loss correlations. Still the variation with tip gap size is predicted well by some of the investigated models. As dependency of tip clearance losses on stage velocity triangles is considered, none of the tested correlations gives results consistent with the numerical simulations. The use of standard correlations ‘beyond the limits’ is thus considered to introduce high uncertainty. Due to the good consistency between LDA and numerical results, the conclusions are considered to be valid for stage designs similar to the ones analyzed.


Author(s):  
Manuel Fritsche ◽  
Philipp Epple ◽  
Stefan Gast ◽  
Antonio Delgado

Abstract The working machines such as fans, blowers and pumps are often used for transporting fluids in technical systems. The rotating impeller is used for energy conversion of mechanical work into hydraulic work. Leonhard Euler published this relation of energy conversion in 1752–1756 and is still used today for the basic design of turbomachinery. In the present work, the Euler-Equation is described and presented in detail. Furthermore, a simplified parameterized blade channel of a centrifugal impeller is investigated with numerical simulation methods. The theoretical Euler-Equation is compared and validated with the numerical CFD-results. Based on an extensive CFD-optimization study, the impact of the impeller design parameters on the fan performance has been investigated. For this purpose, the blade shape and the operating conditions (speed and volume flow rate) were systematically varied. After an extensive grid study, the influence of the blade channel contour on the fan performance was investigated. The results of the study are presented in detail.


Author(s):  
Ty W. Neises ◽  
Michael J. Wagner ◽  
Allison K. Gray

Research of advanced power cycles has shown supercritical carbon dioxide power cycles may have thermal efficiency benefits relative to steam cycles at temperatures around 500–700°C. To realize these benefits for CSP, it is necessary to increase the maximum outlet temperature of current tower designs. Research at NREL is investigating a concept that uses high-pressure supercritical carbon dioxide as the heat transfer fluid to achieve a 650°C receiver outlet temperature. At these operating conditions, creep becomes an important factor in the design of a tubular receiver and contemporary design assumptions for both solar and traditional boiler applications must be revisited and revised. This paper discusses lessons learned for high-pressure, high-temperature tubular receiver design. An analysis of a simplified receiver tube is discussed, and the results show the limiting stress mechanisms in the tube and the impact on the maximum allowable flux as design parameters vary. Results of this preliminary analysis indicate an underlying trade-off between tube thickness and the maximum allowable flux on the tube. Future work will expand the scope of design variables considered and attempt to optimize the design based on cost and performance metrics.


2021 ◽  
Vol 102 (1) ◽  
Author(s):  
Jørgen Apeland ◽  
Dimitrios G. Pavlou ◽  
Tor Hemmingsen

AbstractThe use of multirotor drones for industrial applications is accelerating, and fuel cell based propulsion systems are highlighted as a promising approach to improve endurance – one of the current main limitations. Due to multirotor drones’ unique requirements, careful system design is needed to maximize the performance advantage. In this work a sensitivity analysis that quantifies the impact of central system parameters for an X8 multirotor drone with a 2 kW fuel cell hybrid system is presented and discussed. Thrust stand measurements identified a 20–30% efficiency loss from the coaxial configuration, and a ‘single’ configuration can reduce power consumption by 700 W at 25 kg take-off mass. Thus, a smaller fuel cell system can be used, giving an additional 1 kg mass saving and 75–140 W power reduction. Peak endurance is found at a 0.67 energy system weight fraction, and if batteries are improved from 180 Wh/kg to 350 Wh/kg, the energy system mass threshold from where fuel cells are superior rises from 7.4 kg to 8.5 kg. At 700 bar, a 3 L hydrogen cylinder can replace a 6 L at 300 bar, provide a 72-min endurance, and is the preferred option to reach minimum system volume. This work provides guidance in early conceptual stages and insights on how fuel cell based powerplants for multirotors can be improved and optimized to increase their value proposition. Further research can expand the work to cover other system variations and do experimental testing of system performance.


Sign in / Sign up

Export Citation Format

Share Document