THE RESPONSE OF STARCH/GELATIN/GLYCERIN AQUEOUS ELECTRORHEOLOGICAL ELASTOMER TO APPLIED ELECTRIC FIELD

2005 ◽  
Vol 19 (07n09) ◽  
pp. 1449-1455 ◽  
Author(s):  
LINGXIANG GAO ◽  
XIAOPENG ZHAO

The aqueous ER elastomers, containing crude organic starch particles which dispersed in gelatin/glycerin/water matrix, were prepared with or without the applied DC electric field. The responses of the composite systems to the electric field were tested by the compression modulus and resistance of the elastomers. The result shows that they are enhanced and controlled evidently under an applied DC electric field. The strongest responses appear at 25% weight fraction of starch. In addition, the increment modulus of the elastomer increases with the strength of the applied field within 0.5~1.5 kV/mm, while after the field is stronger than 1.5 kV/mm it doesn't increase with field, appearing "saturation".

2004 ◽  
Vol 18 (14) ◽  
pp. 697-705
Author(s):  
HUI LI ◽  
JUNFENG WANG ◽  
RUI XIONG ◽  
FAN YI ◽  
WUFENG TANG ◽  
...  

We investigated the response of K 0.3 MoO 3 to high dc electric field in a large temperature range 14–95 K. The remarkable switching from insulating to highly conducting state was observed at 14–75 K. The second threshold field for the switching takes a minimum value at around 50 K. In the highly conducting state, the conductance displays a novel linear correlation to the applied electric field. We also compared the I–E characteristic obtained in the constant-voltage condition and the constant-current condition, which show distinct differential resistances.


1997 ◽  
Vol 06 (03) ◽  
pp. 349-360
Author(s):  
Ping Xie ◽  
Jian-Hua Dai ◽  
Peng-Ye Wang ◽  
Hong-Jun Zhang

The gain and the spatial fidelity of signal amplification in photorefractive BaTiO 3: Ce , with considerations of the effect of the externally applied electric field and the fanning effect (or noise), are numerically studied using a three-dimensional analysis. Although the gain of the signal can be enhanced with the applied field, its spatial fidelity is greatly reduced, especially at a small angle between the two propagation directions of the pump and signal beams. The fanning effect reduces the spatial fidelity, and the smaller the input signal to pump intensity ratio is, the smaller the fidelity becomes. At large magnitudes of the applied field, the applied field plays a critical role in the reduction of the fidelity of the signal and the fanning effect on the fidelity is negligible.


2015 ◽  
Vol 2 (4) ◽  
pp. 140394 ◽  
Author(s):  
Silvia Jiménez Bolaños ◽  
Bogdan Vernescu

The problem of determining nonlinear neutral inclusions in (electrical or thermal) conductivity is considered. Neutral inclusions, inserted in a matrix containing a uniform applied electric field, do not disturb the field outside the inclusions. The well-known Hashin-coated sphere construction is an example of a neutral inclusion. In this paper, we consider the problem of constructing neutral inclusions from nonlinear materials. In particular, we discuss assemblages of coated ellipsoids. The proposed construction is neutral for a given applied field.


A theoretical analysis is given of the motion of solid non-conducting charged spheres through symmetrical electrolytes, under the action of an applied electric field. It is shown that the steady velocity of translation U may be written in the alternative forms U = Ʃ ∞ 1 c v Q v = Ʃ ∞ 1 d v ζ v , where Qe denotes the charge on a sphere and ζ the zeta-potential; the coefficients c v and d v are proportional to the applied field strength and depend upon the radius of the particle and the concentrations, valencies and mobilities of the ions in the electrolyte. A general method is given for calculating the c v and d v and the first four coefficients of each series found explicitly. Some quite general properties of the c v are also deduced. It is shown that under certain conditions, the terms of the series for U , apart from the first, are of considerable importance and must be taken into account in estimating ζ from U .


2012 ◽  
Vol 503 ◽  
pp. 97-102 ◽  
Author(s):  
Xiu Jian Chou ◽  
Miao Xuan Du ◽  
Yong Bo Lv ◽  
Jun Liu ◽  
Wen Dong Zhang

Pb0.97La0.02(Zr0.95Ti0.05)O3 antiferroelectric thick films were prepared on platinized silicon substrates by sol–gel methods. Films showed polycrystalline perovskite structure with a strong (100) preferred orientation. The antiferroelectric nature of the films was confirmed by the double hysteresis behaviors versus applied field. The temperature dependence of dielectric constant and loss displayed the Curie temperature was 225oC.The current caused by the polarization and depolarization of polar was detected at coupling application of electric field and temperature. The phase transition characterization could be effectively adjusted by electric field and temperature.


1962 ◽  
Vol 40 (9) ◽  
pp. 1056-1066 ◽  
Author(s):  
Robert Barrie ◽  
R. R. Burgess

The drift velocity of electrons in n-type germanium has been measured as a function of applied electric field at lattice temperatures of 77° K and 295° K. Three directions of applied field were used, viz. (100), (110), and (111) crystal directions. The range of field strength was from 500 v/cm to 75 kv/cm. A longitudinal anisotropy was observed at 77° K but not at 295° K. All specimens showed saturation of the drift velocity at high fields. At 77° K, all (100) specimens exhibited a breakdown effect, the cause of which is not known. The results are analyzed on the basis of an extension of Stratton's theory to the case of a many-valley semiconductor.


Author(s):  
A.A.S.N. Jayalal ◽  
K.A.I.L. Wijewardena Gamalath

An approximate extension of the slender body theory was used to determine the static shape of a conically ended dielectric fluid drop in an electric field. Using induced surface charge density, hydrostatic pressure and the surface tension of the liquid with interfacial tension stresses and Maxwell electric stresses, a governing equation was obtained for slender geometries for the equilibrium configuration and numerically solved for 3D. For an applied electric field, the electric energy on a spherical drop can be maximized in a weak dielectric by increasing the applied electric field. The minimum dielectric constant ratio needed to produce a conical end is 14.5 corresponding to a cone angle 31.25° .There is a sharp increment of the aspect ratio after reaching the threshold value of the applied field strength and the deformation of the fluid drop increases with the increase in dielectric constant of the fluid drop. For a particular dielectric constant ratio, the threshold electric field producing conical interface increases with the increased surface tension of the liquid. The threshold electric field for a water drop is 1.0854×104 units and the corresponding aspect ratio is 15. For the minimum dielectric ratio the cone angle of the drop decreases with applied field making the drop more stable at higher fields.


2001 ◽  
Vol 676 ◽  
Author(s):  
P. Chaoguang ◽  
J. Ederth ◽  
L. B. Kish ◽  
C. G. Granqvist

ABSTRACTNanocrystalline gold films were prepared by advanced gas deposition. Electric field induced effects on the film structure during and after deposition was investigated. A dc electric field in the range 2 ≤Ua ≤ 8 V/cm, was applied parallel to the substrate surface and led to changes of film microstructure and resistivity. In another set of experiments, films deposited at Ua = 0 were exposed to electric fields of similar strength after deposition. Film degradation could be understood from a mechanism consistent with a biased-percolation effect. Our results show that it is possible to control the film structure by varying the strength of an applied electric field.


1972 ◽  
Vol 33 (C1) ◽  
pp. C1-63-C1-67 ◽  
Author(s):  
M. BERTOLOTTI ◽  
B. DAINO ◽  
P. Di PORTO ◽  
F. SCUDIERI ◽  
D. SETTE

Sign in / Sign up

Export Citation Format

Share Document