scholarly journals DECOHERENCE IN COMPOSITE QUANTUM OPEN SYSTEMS: THE EFFECTIVENESS OF UNSTABLE DEGREES OF FREEDOM

2006 ◽  
Vol 20 (20) ◽  
pp. 2951-2976 ◽  
Author(s):  
FERNANDO C. LOMBARDO ◽  
PAULA I. VILLAR

The effect induced by an environment on a composite quantum system is studied. The model considers the composite system as comprised by a subsystem A coupled to a subsystem B which is also coupled to an external environment. We studied all possible four combinations of subsystems A and B made up with a harmonic oscillator and an upside down oscillator. We analyzed the decoherence suffered by subsystem A due to an effective environment composed by subsystem B and the external reservoir. In all the cases we found that subsystem A decoheres even though it interacts with the environment only through its sole coupling to B. However, the effectiveness of the diffusion depends on the unstable nature of subsystem A and B. Therefore, the role of this degree of freedom in the effective environment is analyzed in detail.

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 995
Author(s):  
Barış Çakmak ◽  
Özgür E. Müstecaplıoğlu ◽  
Mauro Paternostro ◽  
Bassano Vacchini ◽  
Steve Campbell

We investigate the implications of quantum Darwinism in a composite quantum system with interacting constituents exhibiting a decoherence-free subspace. We consider a two-qubit system coupled to an N-qubit environment via a dephasing interaction. For excitation preserving interactions between the system qubits, an analytical expression for the dynamics is obtained. It demonstrates that part of the system Hilbert space redundantly proliferates its information to the environment, while the remaining subspace is decoupled and preserves clear non-classical signatures. For measurements performed on the system, we establish that a non-zero quantum discord is shared between the composite system and the environment, thus violating the conditions of strong Darwinism. However, due to the asymmetry of quantum discord, the information shared with the environment is completely classical for measurements performed on the environment. Our results imply a dichotomy between objectivity and classicality that emerges when considering composite systems.


2002 ◽  
Vol 09 (01) ◽  
pp. 1-18 ◽  
Author(s):  
Andrzej Kossakowski

The dynamics of spherical harmonic oscillator interacting with radiation field is investigated. It is shown that the irreversibility of time evolution is due to the appearance of resonances. Reduced dynamics is given in terms of multi-time correlation functions in the Markovian limit, which includes higher order corrections in the coupling constant.


2019 ◽  
Author(s):  
Riccardo Spezia ◽  
Hichem Dammak

<div> <div> <div> <p>In the present work we have investigated the possibility of using the Quantum Thermal Bath (QTB) method in molecular simulations of unimolecular dissociation processes. Notably, QTB is aimed in introducing quantum nuclear effects with a com- putational time which is basically the same as in newtonian simulations. At this end we have considered the model fragmentation of CH4 for which an analytical function is present in the literature. Moreover, based on the same model a microcanonical algorithm which monitor zero-point energy of products, and eventually modifies tra- jectories, was recently proposed. We have thus compared classical and quantum rate constant with these different models. QTB seems to correctly reproduce some quantum features, in particular the difference between classical and quantum activation energies, making it a promising method to study unimolecular fragmentation of much complex systems with molecular simulations. The role of QTB thermostat on rotational degrees of freedom is also analyzed and discussed. </p> </div> </div> </div>


2019 ◽  
Vol 7 (2) ◽  
pp. 209-232
Author(s):  
Nicole Jenne ◽  
Jun Yan Chang

AbstractThe conflict between the Thai state and the Malay-Muslim insurgency in the country's Deep South is one of Southeast Asia's most persistent internal security challenges. The start of the current period of violence dates back to the early 2000s, and since then, a significant number of studies exploring the renewed escalation have been published. In this study, we argue that existing scholarship has not adequately accounted for the external environment in which political decisions were taken on how to deal with the southern insurgency. We seek to show how the internationally dominant, hegemonic security agenda of so-called non-traditional security (NTS) influenced the Thai government's approach to the conflict. Building upon the Copenhagen School's securitisation theory, we show how the insurgency became securitised under the dominant NTS narrative, leading to the adoption of harsh measures and alienating discourses that triggered the escalation of violence that continues today. The specific NTS frameworks that ‘distorted’ the Thai state's approach of one that had been informed solely by local facts and conditions were those of anti-narcotics and Islamist terrorism, albeit in different ways. Based on the findings from the case study, the article concludes with a reflection on the role of the hegemonic NTS agenda and its implications for Southeast Asian politics and scholarship.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Woo Seung Ham ◽  
Abdul-Muizz Pradipto ◽  
Kay Yakushiji ◽  
Kwangsu Kim ◽  
Sonny H. Rhim ◽  
...  

AbstractDzyaloshinskii–Moriya interaction (DMI) is considered as one of the most important energies for specific chiral textures such as magnetic skyrmions. The keys of generating DMI are the absence of structural inversion symmetry and exchange energy with spin–orbit coupling. Therefore, a vast majority of research activities about DMI are mainly limited to heavy metal/ferromagnet bilayer systems, only focusing on their interfaces. Here, we report an asymmetric band formation in a superlattices (SL) which arises from inversion symmetry breaking in stacking order of atomic layers, implying the role of bulk-like contribution. Such bulk DMI is more than 300% larger than simple sum of interfacial contribution. Moreover, the asymmetric band is largely affected by strong spin–orbit coupling, showing crucial role of a heavy metal even in the non-interfacial origin of DMI. Our work provides more degrees of freedom to design chiral magnets for spintronics applications.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3740
Author(s):  
Olafur Oddbjornsson ◽  
Panos Kloukinas ◽  
Tansu Gokce ◽  
Kate Bourne ◽  
Tony Horseman ◽  
...  

This paper presents the design, development and evaluation of a unique non-contact instrumentation system that can accurately measure the interface displacement between two rigid components in six degrees of freedom. The system was developed to allow measurement of the relative displacements between interfaces within a stacked column of brick-like components, with an accuracy of 0.05 mm and 0.1 degrees. The columns comprised up to 14 components, with each component being a scale model of a graphite brick within an Advanced Gas-cooled Reactor core. A set of 585 of these columns makes up the Multi Layer Array, which was designed to investigate the response of the reactor core to seismic inputs, with excitation levels up to 1 g from 0 to 100 Hz. The nature of the application required a compact and robust design capable of accurately recording fully coupled motion in all six degrees of freedom during dynamic testing. The novel design implemented 12 Hall effect sensors with a calibration procedure based on system identification techniques. The measurement uncertainty was ±0.050 mm for displacement and ±0.052 degrees for rotation, and the system can tolerate loss of data from two sensors with the uncertainly increasing to only 0.061 mm in translation and 0.088 degrees in rotation. The system has been deployed in a research programme that has enabled EDF to present seismic safety cases to the Office for Nuclear Regulation, resulting in life extension approvals for several reactors. The measurement system developed could be readily applied to other situations where the imposed level of stress at the interface causes negligible material strain, and accurate non-contact six-degree-of-freedom interface measurement is required.


Universe ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 17
Author(s):  
Nils Andersson

As mature neutron stars are cold (on the relevant temperature scale), one has to carefully consider the state of matter in their interior. The outer kilometre or so is expected to freeze to form an elastic crust of increasingly neutron-rich nuclei, coexisting with a superfluid neutron component, while the star’s fluid core contains a mixed superfluid/superconductor. The dynamics of the star depend heavily on the parameters associated with the different phases. The presence of superfluidity brings new degrees of freedom—in essence we are dealing with a complex multi-fluid system—and additional features: bulk rotation is supported by a dense array of quantised vortices, which introduce dissipation via mutual friction, and the motion of the superfluid is affected by the so-called entrainment effect. This brief survey provides an introduction to—along with a commentary on our current understanding of—these dynamical aspects, paying particular attention to the role of entrainment, and outlines the impact of superfluidity on neutron-star seismology.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Nicolas Boulanger ◽  
Victor Lekeu

Abstract At the free level, a given massless field can be described by an infinite number of different potentials related to each other by dualities. In terms of Young tableaux, dualities replace any number of columns of height hi by columns of height D − 2 − hi, where D is the spacetime dimension: in particular, applying this operation to empty columns gives rise to potentials containing an arbitrary number of groups of D − 2 extra antisymmetric indices. Using the method of parent actions, action principles including these potentials, but also extra fields, can be derived from the usual ones. In this paper, we revisit this off-shell duality and clarify the counting of degrees of freedom and the role of the extra fields. Among others, we consider the examples of the double dual graviton in D = 5 and two cases, one topological and one dynamical, of exotic dualities leading to spin three fields in D = 3.


Sign in / Sign up

Export Citation Format

Share Document