ANALYSIS OF OXYGENATED COMPONENT (BUTYL ETHER) AND EGR EFFECT ON A DIESEL ENGINE

2010 ◽  
Vol 24 (15n16) ◽  
pp. 2844-2849 ◽  
Author(s):  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Potential possibility of the butyl ether (BE, oxygenates of di-ether group) was analyzed as an additives for a naturally aspirated direct injection diesel engine fuel. Engine performance and exhaust emission characteristics were analyzed by applying the commercial diesel fuel and oxygenates additives blended diesel fuels. Smoke emission decreased approximately 26% by applying the blended fuel (diesel fuel 80 vol-% + BE 20vol-%) at the engine speed of 25,000 rpm and with full engine load compared to the diesel fuel. There was none significant difference between the blended fuel and the diesel fuel on the power, torque, and brake specific energy consumption rate of the diesel engine. But, NOx emission from the blended fuel was higher than the commercial diesel fuel. As a counter plan, the EGR method was employed to reduce the NOx . Simultaneous reduction of the smoke and the NOx emission from the diesel engine was achieved by applying the BE blended fuel and the cooled EGR method.

2012 ◽  
Vol 06 ◽  
pp. 425-430
Author(s):  
HYUNG-GON KIM ◽  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

Effect of oxygen components of fuels on exhaust emissions has been investigated by applying an indirect injection (IDI) diesel engine. This research analyzed variation and/or difference of the engine performance and exhaust emission characteristics of the IDI diesel engine by fueling the commercial diesel fuel and four different mixed ratios of oxygenated blended fuels. Effect of the exhaust gas recirculation (EGR) method was analyzed on the NOx emission characteristics. Ethylene glycol mono-n-butyl ether (EGBE) contains 27% of oxygen components in itself, and it is a kind of effective oxygenated fuel of mono-ether group. Smoke emission from the EGBE was reduced remarkably relative to the commercial diesel fuel. The EGBE can supply oxygen components sufficiently at higher diesel engine loads and speeds. It was found that a simultaneous reduction of the smoke and the NOx was achieved with the oxygenated fuel (10 vol-%) and the cooled EGR method (10%).


2010 ◽  
Vol 24 (15n16) ◽  
pp. 2850-2855 ◽  
Author(s):  
SEUNG-HUN CHOI ◽  
YOUNG-TAIG OH

In this study, the possibility of biodiesel fuel and oxygenated fuel (dimethoxy methane ; DMM) was investigated as an alternative fuel for a naturally aspirated direct injection diesel engine. The smoke emission of blending fuel (biodiesel fuel 90vol-% + DMM 10vol-%) was reduced approximately 70% at 2500rpm, full load in comparison with the diesel fuel. But, engine power and brake specific energy consumption showed no significant differences. But, NOx emission of biodiesel fuel and DMM blended fuel increased compared with commercial diesel fuel due to the oxygen component in the fuel. It was needed a NOx reduction counter plan that EGR method was used as a countermeasure for NOx reduction. It was found that simultaneous reduction of smoke and NOx emission was achieved with BDF (95 vol-%) and DMM (5 vol-%) blended fuel and cooled EGR method (15%).


2014 ◽  
Vol 699 ◽  
pp. 708-713
Author(s):  
Md. Isa Ali ◽  
A. Shahrir ◽  
W.M. Faizal ◽  
M.T. Iskandar

In the present experimental investigation, untreated waste cooking oil (UWCO) was used as an alternative fuel for a diesel engine. The high viscosity of the UWCO was reduced by blending with ordinary diesel. The blends of varying proportions of UWCO and diesel were prepared, analyzed and compared with diesel fuel. Measurements of chemical and physical properties have indicated a good potential of using UWCO as an alternative diesel engine fuel. The results showed that blends containing 5 to 40% of UWCO in diesel yielded the properties closely matching that of diesel. The performance of the engine using blends of UWCO was evaluated in a four cylinder diesel engine and compared with the performance obtained with diesel. Significant improvement in the engine performance was observed. The results showed that the addition of 30% UWCO with diesel produced higher brake power with a reduction in exhaust emission such as CO2 and NOx. The specific fuel consumption and the exhaust temperature were increased due to decrease in viscosity of the UWCO. Acceptable thermal efficiencies of the engine were obtained with blends containing up to 30% volume of UWCO. From the properties and engine test result, it has been established that 10-30% of UWCO can be substituted for diesel without any engine modification.


Author(s):  
Nigran Homdoung ◽  
Kittikorn Sasujit ◽  
Natthawud Dussadee ◽  
Rameshprabu Ramaraj

The increasing consumption and demand for fossil fuels have more significance than before alarm above its lessening rate and for that reason, stimulated the actions are needed to challenge the issue with an efficient and less polluting alternative fuel for diesel. This study evaluated the performance of an 8.2 kW small diesel engine using three fuels, namely diesel, waste cooking oil biodiesel and wild tree biodiesel, such as granadilla oil biodiesel (GBD) and tung oil biodiesel (TBD). The experimental engine was tested at 1,500 rpm of constant engine speed and 20–80% of engine load. The specific fuel consumption, brake specific energy consumption, brake mean sufficient pressure, brake thermal efficiency, exhaust emission and temperature were evaluated. It was found that the small diesel engine worked well using wild trees biodiesel. The brake means effective pressures were lower by 5–8% and thermal brake efficiency was decreased in the range of 9–15%, compared with diesel fuel. The exhaust emission was lower than Thailand’s industrial standard and slightly higher than waste cooking oil biodiesel and diesel fuel operation. The operation of biodiesel from wild trees is suitable for farmers and is considered feasible for local communities in the future.


Author(s):  
H. Sharon ◽  
Joel Jackson R. ◽  
Prabha C.

Feed stock cost and NOX emission are the major barriers for commercialization of biodiesel. Waste cooking oil is well identified as one of the cheapest feed stocks for biodiesel production. This chapter reduces NOX emission of waste cooking oil biodiesel. Test fuel blends are prepared by mixing diesel (20 to 50 v/v%), butanol (5 v/v%), and waste cooking oil biodiesel (45 to 75 v/v%). Fuel properties of waste cooking oil biodiesel are enhanced due to addition of diesel and butanol. Brake specific energy consumption of the blends is higher than diesel fuel. Harmful emissions like carbon monoxide, nitrous oxide, and smoke opacity are lower for blends than diesel fuel. Increasing biodiesel concentration in blend also reduces hydrocarbon emission to a significant extent. The obtained results justify the suitability of proposed cheap blends for diesel engine emission reduction.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 555-566 ◽  
Author(s):  
Feyyaz Candan ◽  
Murat Ciniviz ◽  
Ilker Ors

In this study, methanol in ratios of 5-10-15% were incorporated into diesel fuel with the aim of reducing harmful exhaust gasses of Diesel engine, di-tertbutyl peroxide as cetane improver in a ratio of 1% was added into mixture fuels in order to reduce negative effects of methanol on engine performance parameters, and isobutanol of a ratio of 1% was used as additive for preventing phase separation of all mixtures. As results of experiments conducted on a single cylinder and direct injection Diesel engine, methanol caused the increase of NOx emission while reducing CO, HC, CO2, and smoke opacity emissions. It also reduced torque and power values, and increased brake specific fuel consumption values. Cetane improver increased torque and power values slightly compared to methanol-mixed fuels, and reduced brake specific fuel consumption values. It also affected exhaust emission values positively, excluding smoke opacity. Increase of injector injection pressure affected performances of methanol-mixed fuels positively. It also increased injection pressure and NOx emissions, while reducing other exhaust emissions.


Power Plant ◽  
2018 ◽  
Vol 5 (1) ◽  
pp. 18-23
Author(s):  
Redaksi Tim Jurnal

Pure Plant Oil (PPO) such as Pure Coconut Oil (PCO) and Pure Palm Oil (PPaO) could be a solution for electricity problem in remote areas in Indonesia. PCO and PPaO can be used as a fuel for diesel engine to produce electricity. This paper will compare and analyze the performance and emissions of the diesel power plant fueled with diesel fuel, PCO, and PPaO. For performance parameter, brake specific fuel consumption and thermal efficiency of diesel engine by using PPaO and PCO are higher than the diesel fuel, but the brake specific energy consumption are lower than the diesel fuel. That means diesel engine will be more efficient and have lower operational cost by using PPaO and PCO. For the emission parameters, CO2, CO, and CH emissions from PPaO and PCO are higher compared to diesel fuel. That means PPO have higher carbon emission than just using conventional diesel fuel. But, there are highly significant difference of less NOX emissions by using PCO and PPaO compared to the diesel fuel. That means it will be better using PPO because diesel engine has lack of high NOX emissions. These differences of diesel engine performance and emissions by PPaO, PCO, and diesel fuel are caused by the fuel characteristic differences such as cetane number, calorific value, and viscosity.


Author(s):  
P. Ramu ◽  
C. G. Saravanan

In internal combustion engines, approximately one third of the total fuel input energy was converted into useful work and two-third has loss through exhaust gas and cooling system. Recently research has been focused on the reduction of diesel emitted pollutants due to strict emission regulations. In this study, the effect of ceramic coating to cylinder head, valves and piston crown on diesel engine performance and exhaust emission is examined. Ceramic layers were made by ZrO2-Al2O3 by using plasma coating method thickness to about 200 microns. The ceramic coated diesel engine was tested in a single cylinder, four stroke and water cooled DI diesel engine. Second part of the investigation was carried out with the fuel additive di iso propyl ether with thermal barrier coated diesel engine. The results indicate that there is reduction in fuel consumption, NOx emission and slightly increases the thermal efficiency of the engine. The combined effect of coating and fuel additive has significantly reduced the NOx emission.


2015 ◽  
Vol 773-774 ◽  
pp. 425-429 ◽  
Author(s):  
Nur Atiqah Ramlan ◽  
Abdul Adam Abdullah ◽  
Mohd Herzwan Hamzah ◽  
Nur Fauziah Jaharudin ◽  
Rizalman Mamat

The depletion of fossil fuels as well as the rises of greenhouse gases had caused most government worldwide to follow the international energy policies for the use of biodiesel. One of the economical sources for biodiesel production is waste cooking oil. The use of waste cooking oil is more sustainable if they can perform similarly to conventional diesel fuel. This paper deals with the experimental study carried out to evaluate the engine performance and exhaust emission of diesel engine operated by biodiesel from waste cooking oil at various engine speed. The biodiesel used are known as B5, which contains of 5% of waste cooking oil and 95% of diesel fuel. The other one is B20, which contains of 20% of waste cooking oil plus 80% of diesel. Diesel was used as a comparison purposes. The results show that power and torque for B5 give the closest trend to diesel. In terms of heat release, diesel still dominates the highest value compared to B5 and B20. For exhaust emission, B5 and B20 showed improvement in the reduction of NOx and PM.


Author(s):  
Seung Hyun Yoon ◽  
Su Han Park ◽  
Hyun Kyu Suh ◽  
Chang Sik Lee

An experiment was performed to analyze the effects of biodiesel-ethanol blended fuel spray on the combustion and exhaust emission characteristics of a single-cylinder common-rail diesel engine. To analyze the macroscopic and microscopic characteristics of biodiesel blended fuel spray, measurements of the injection rate, droplet diameter, and spray tip penetration were taken using an injection rate meter, spray visualization and a droplet measuring system. The combustion, exhaust emission characteristics and size distributions of particulate matter were determined for various engine operating conditions using biodiesel-ethanol blends, and the results were compared to those of conventional diesel fuel. In this investigation, the measured results of biodiesel-ethanol blended fuels show that the Sauter mean diameter (SMD) decreased with an increase of relative velocity between the injected fuel and ambient gas. Comparing the combustion characteristics of diesel fuel and biodiesel-ethanol blended fuels, both diesel and blended fuel showed similar trends in combustion pressure and the rate of heat release. However, the combustion of biodiesel-ethanol blends had lower combustion characteristics such as combustion pressures and heat release rates than those of diesel fuel because of their lower heating values. In the case of exhaust gas recirculation (EGR), the indicated specific NOx (ISNOx), and soot concentrations were lower than those of conventional diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document