Identifying influential spreaders based on diffusion K-truss decomposition

2018 ◽  
Vol 32 (22) ◽  
pp. 1850238 ◽  
Author(s):  
Li Yang ◽  
Yu-Rong Song ◽  
Guo-Ping Jiang ◽  
Ling-Ling Xia

Identifying the most influential spreaders is important in optimizing the network structure or disseminating information through networks. Recent study showed that the K-truss decomposition could filter out the nodes that performed a worse spreading behavior in the maximal K-shell subgraph. The spreaders belonging to the maximal K-truss subgraph show better performance compared to previously used importance criteria. However, the accuracy of the K-truss or the K-shell in determining node coreness is largely susceptible to core-like group. In this paper, we propose an improved diffusion K-truss decomposition method by considering both the diffusion and clustering of edges to eliminate the impact of core-like group on identifying influential nodes. To validate the effectiveness of the proposed method, we compare it with five typical methods by carrying out Monte–Carlo simulations over six real complex networks. Simulation results demonstrate that the proposed method can effectively disintegrate the core-like group and accurately identify the influential nodes.

Author(s):  
Sebastian Eisele ◽  
Fabian M. Draber ◽  
Steffen Grieshammer

First principles calculations and Monte Carlo simulations reveal the impact of defect interactions on the hydration of barium-zirconate.


Cancers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1889
Author(s):  
Arthur Bongrand ◽  
Charbel Koumeir ◽  
Daphnée Villoing ◽  
Arnaud Guertin ◽  
Ferid Haddad ◽  
...  

Proton therapy (PRT) is an irradiation technique that aims at limiting normal tissue damage while maintaining the tumor response. To study its specificities, the ARRONAX cyclotron is currently developing a preclinical structure compatible with biological experiments. A prerequisite is to identify and control uncertainties on the ARRONAX beamline, which can lead to significant biases in the observed biological results and dose–response relationships, as for any facility. This paper summarizes and quantifies the impact of uncertainty on proton range, absorbed dose, and dose homogeneity in a preclinical context of cell or small animal irradiation on the Bragg curve, using Monte Carlo simulations. All possible sources of uncertainty were investigated and discussed independently. Those with a significant impact were identified, and protocols were established to reduce their consequences. Overall, the uncertainties evaluated were similar to those from clinical practice and are considered compatible with the performance of radiobiological experiments, as well as the study of dose–response relationships on this proton beam. Another conclusion of this study is that Monte Carlo simulations can be used to help build preclinical lines in other setups.


MRS Advances ◽  
2017 ◽  
Vol 2 (48) ◽  
pp. 2627-2632 ◽  
Author(s):  
Poppy Siddiqua ◽  
Michael S. Shur ◽  
Stephen K. O’Leary

ABSTRACTWe examine how stress has the potential to shape the character of the electron transport that occurs within ZnO. In order to narrow the scope of this analysis, we focus on a determination of the velocity-field characteristics associated with bulk wurtzite ZnO. Monte Carlo simulations of the electron transport are pursued for the purposes of this analysis. Rather than focusing on the impact of stress in of itself, instead we focus on the changes that occur to the energy gap through the application of stress, i.e., energy gap variations provide a proxy for the amount of stress. Our results demonstrate that stress plays a significant role in shaping the form of the velocity-field characteristics associated with ZnO. This dependence could potentially be exploited for device application purposes.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983083
Author(s):  
Yongjun Du ◽  
Zhenggeng Ye ◽  
Pan Zhang ◽  
Yaqi Guo ◽  
Zhiqiang Cai

The construction spectrum is a useful tool to investigate the network reliability, which only depends on network structure and is called structure invariant. Importance measures are efficient tools to quantify and rank the impact of edges within a network. This study considers the K-terminal network with n edges and assumes that edges fail with an equal probability. The article focuses on investigating the importance measures of individual edge for the K-terminal network, including reliability achievement worth and reliability reduction worth, via the construction spectrum–based method. Generally, we establish the equations for reliability achievement worth and reliability reduction worth using the construction spectrum and determine the conditions under which the importance rankings generated by reliability achievement worth and reliability reduction worth only depend on the network structure through the construction spectrum. Similar results are obtained with reliability achievement worth and reliability reduction worth for pair of edges. A construction spectrum–based Monte-Carlo simulation is used to estimate reliability achievement worth and reliability reduction worth. Finally, a numerical example is presented to illustrate the application of these measures.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shengzhe Li ◽  
Dongmei Yang ◽  
Tengfei Zhang ◽  
Xiaojing Liu

CIPS is a shift in the axial power towards the bottom half of the core, also known as axial offset anomaly (AOA), which results from the deposited of corrosion products during an operation. The main reason of CIPS is the solute particles especially boron compounds concentrated inside the porous deposit. The impact of CIPS is that the axial power distribution control may be more difficult and the shutdown margin can be decreased simultaneously. Besides, it also requires estimated critical condition (ECC) calculations to account for the effects of AOA. In this article, thermal-hydraulic subchannel code and boron deposit model have been combined to analyze the CIPS risk. The neutronics codes deal with the generation of homogenized neutron cross section as well as the calculation of local power factor. A simple rod assembly is analyzed with this combined method and simulation results are presented. Simulation results provide the boron hideout amount inside crud deposits and power shapes. The obtained results clearly show the power shape suppression in regions where crud deposits exist, which is a clear indication of CIPS phenomenon. And the CIPS effects on CHF have also been investigated. Result shows a margin of DNBR decrease in the crud case.


Author(s):  
Brittany Neilson ◽  
Dmitrii Paniukov ◽  
Martina I. Klein

Signal detection theory is commonly utilized in the field of human factors. Despite its common use, the assessment of the signal detection theory assumptions is not often cited. The purpose of this research was to provide a preliminary assessment of the impact of assumption violations on estimates of sensitivity commonly used in signal detection theory research. This assessment was performed using Monte Carlo simulations. Our research indicated that violating the homogeneity of variance assumption resulted in estimates of sensitivity varying with changes in the response criterion. However, an unequal number of signal and noise trials, which is common in vigilance research, did not impact the estimates of sensitivity. Based upon our findings, caution should be taken with regard to violations of homogeneity of variance. Future research aims to determine the impact of multiple assumption violations on estimates of sensitivity.


NANO ◽  
2014 ◽  
Vol 09 (04) ◽  
pp. 1450051
Author(s):  
ASHWANI VERMA ◽  
BAHNIMAN GHOSH ◽  
AKSHAY KUMAR SALIMATH

In this paper, we have used semiclassical Monte Carlo method to show the dependence of spin relaxation length in III–V compound semiconductor core–shell nanowires on different parameters such as lateral electric field, temperature and core dimensions. We have reported the simulation results for electric field in the range of 0.5–10 kV/cm, temperature in the range of 77–300 K and core length ranging from 2 nm to 8 nm. The spin relaxation mechanisms used in III–V compound semiconductor core–shell nanowire are D'yakonov–Perel (DP) relaxation and Elliott–Yafet (EY) relaxation. Depending upon the choice of materials for core and shell, nanowire forms two types of band structures. We have used InSb – GaSb core–shell nanowire and InSb – GaAs core–shell nanowire and nanowire formed by swapping the core and shell materials to show all the results.


2022 ◽  
Vol 2022 (1) ◽  
pp. 013402
Author(s):  
Xiang Li ◽  
Mauro Mobilia ◽  
Alastair M Rucklidge ◽  
R K P Zia

Abstract We investigate the long-time properties of a dynamic, out-of-equilibrium network of individuals holding one of two opinions in a population consisting of two communities of different sizes. Here, while the agents’ opinions are fixed, they have a preferred degree which leads them to endlessly create and delete links. Our evolving network is shaped by homophily/heterophily, a form of social interaction by which individuals tend to establish links with others having similar/dissimilar opinions. Using Monte Carlo simulations and a detailed mean-field analysis, we investigate how the sizes of the communities and the degree of homophily/heterophily affect the network structure. In particular, we show that when the network is subject to enough heterophily, an ‘overwhelming transition’ occurs: individuals of the smaller community are overwhelmed by links from the larger group, and their mean degree greatly exceeds the preferred degree. This and related phenomena are characterized by the network’s total and joint degree distributions, as well as the fraction of links across both communities and that of agents having fewer edges than the preferred degree. We use our mean-field theory to discuss the network’s polarization when the group sizes and level of homophily vary.


Sign in / Sign up

Export Citation Format

Share Document