Realization of tunable TE/TM wave splitter with one-dimensional plasma dielectric photonic crystal

2018 ◽  
Vol 32 (23) ◽  
pp. 1850253 ◽  
Author(s):  
K. F. Shen ◽  
B. Guo

A tunable transverse electric (TE) and transverse magnetic (TM) wave splitter using one-dimensional plasma dielectric photonic crystal which consists of plasma arranged periodically in a host dielectric medium is proposed. We performed a detailed study to explore the phenomena of reflection and transmission that occurs on obliquely incident electromagnetic wave propagating in the proposed plasma dielectric photonic crystal. We exactly calculated the transmittance based on the transfer matrix method. We find that if the parameters are selected appropriately, in the TE-stop or TM-stop frequency region, the other polarized component TM or TE wave is totally transmitted. The results also show that the dielectric constant, plasma thickness, incident angle and the applied magnetic field have significantly changed the properties of the TE/TM wave splitter. Moreover, the external magnetic field can be used as a kind of tunable method once the splitter is fabricated. Parameter dependence of the effects for the TE/TM wave splitter is calculated and discussed.

2019 ◽  
Vol 33 (06) ◽  
pp. 1950034
Author(s):  
Yi-Heng Wu ◽  
Yun-Tuan Fang

The transmission properties of one-dimensional photonic crystal composed of the Gyromagnetic and gain medium are investigated. The energy loss due to the Gyromagnetic medium is compensated by adding one gain defect layer. From the analysis, it is found that both the nonreciprocal and enhancement effect are affected considerably by the incident angle, layer thickness, external magnetic field and gain coefficient. Specifically, it is demonstrated that the gain defect layer plays an important role in achieving nonreciprocal and enhancement transmission.


2016 ◽  
Vol 34 (4) ◽  
pp. 421-425
Author(s):  
Christian Nabert ◽  
Karl-Heinz Glassmeier

Abstract. Shock waves can strongly influence magnetic reconnection as seen by the slow shocks attached to the diffusion region in Petschek reconnection. We derive necessary conditions for such shocks in a nonuniform resistive magnetohydrodynamic plasma and discuss them with respect to the slow shocks in Petschek reconnection. Expressions for the spatial variation of the velocity and the magnetic field are derived by rearranging terms of the resistive magnetohydrodynamic equations without solving them. These expressions contain removable singularities if the flow velocity of the plasma equals a certain characteristic velocity depending on the other flow quantities. Such a singularity can be related to the strong spatial variations across a shock. In contrast to the analysis of Rankine–Hugoniot relations, the investigation of these singularities allows us to take the finite resistivity into account. Starting from considering perpendicular shocks in a simplified one-dimensional geometry to introduce the approach, shock conditions for a more general two-dimensional situation are derived. Then the latter relations are limited to an incompressible plasma to consider the subcritical slow shocks of Petschek reconnection. A gradient of the resistivity significantly modifies the characteristic velocity of wave propagation. The corresponding relations show that a gradient of the resistivity can lower the characteristic Alfvén velocity to an effective Alfvén velocity. This can strongly impact the conditions for shocks in a Petschek reconnection geometry.


The one-dimensional inverse electromagnetic scattering problem for the inversion of amplitude data of either linear polarization state is investigated. The method exploits the complex structure of the field scattered from a class of inhomogeneous dielectrics and enables the analytic signal to be reconstructed from measurements of the amplitude alone. The method is demonstrated and exemplified with experimental data in both transverse electric and transverse magnetic polarization states. The implications of the method as a means for regularization of scattered data are briefly discussed.


2020 ◽  
Vol 12 (08) ◽  
pp. 2050085
Author(s):  
Chao Liang ◽  
Chunli Zhang ◽  
Weiqiu Chen ◽  
Jiashi Yang

We study the electromechanical and electrical behaviors of a PN junction in a multiferroic composite fiber, consisting of a piezoelectric semiconductor (PS) layer between two piezomagnetic (PM) layers, under a transverse magnetic field. Based on the derived one-dimensional model for multiferroic composite semiconductor structures, we obtain the linear analytical solution for the built-in potential and electric field in the junction when there is no applied voltage between the two ends of the fiber. When a bias voltage is applied over the two ends of the fiber, a nonlinear numerical analysis is performed for the current–voltage relation. Both a homogeneous junction with a uniform PS layer and a heterogeneous junction with two different PSs on different sides of the junctions are studied. It is found that overall the homogeneous junction is essentially unaffected by the magnetic field, and the heterojunction is sensitive to the magnetic field with potential applications in piezotronics.


2014 ◽  
Vol 576 ◽  
pp. 27-31
Author(s):  
Gai Mei Zhang ◽  
Can Wang ◽  
Yan Jun Guo ◽  
Wang Wei ◽  
Xiao Xiang Song

The photonic crystal has the property that electromagnetic waves with interval of frequency in photonic band gap (PBG) can not be propagated, so it has important applying and researching value. The traditional one-dimensional photonic crystal is with narrow band gap width, and the reflection within the band is small, especially the band gap is sensitive to the incident angle and the polarization of light. A new photonic band gap (PBG) structure, metallodielectric photonic crystal by inserting metal film in the medium can overcomes the shortcomings mentioned above. The one-dimensional Ag/SiOx photonic crystal was prepared, and theoretical and experimental researches were developed. The results show that photonic band gap appears gradually and the band gap width increase with increasing of period of repeating thickness. With the thickness of Ag film increasing, the band gap width increases, but the starting wavelength of the photonic band gap keeps unchanged. With thickness of SiOx film increasing, the band gap width of photonic band gap also increases, but it is not obvious and starting wavelength increases.


In a previous paper (1932) an attempt to measure the effect, if any, of a transverse magnetic field on the velocity of light in vacuo was described. No change greater than 1 part in 2 x 10 7 was found in a field of 18,000 oersted. As the Jamin interferometer used had certain drawbacks for an experiment of this kind, it was decided to set up a Michelson type of interferometer, the use of which might be expected to avoid some of these difficulties and increase the sensitivity. In particular, one of the interfering rays could be made to pass twice through the magnetic field, or, by means of auxiliary mirrors, a multiple of this, while the other interfering ray, being at right angles to the first, was well away from the vicinity of the main leakage field, which would have a compensating effect as far as any change in velocity was concerned.


2015 ◽  
Vol 3 (12) ◽  
pp. 2848-2855 ◽  
Author(s):  
Huiru Ma ◽  
Mingxing Zhu ◽  
Wei Luo ◽  
Wei Li ◽  
Kai Fang ◽  
...  

Instant radical polymerization of sterically stabilized magnetically responsive photonic crystal nonaqueous suspensions under magnetic field can obtain flexible thermochromic free-standing films, which display bright iridescent colors strongly sensitive to temperature with good reversibility and durability.


Sign in / Sign up

Export Citation Format

Share Document