Implication of Bio-convective Marangoni flow of non-Newtonian material towards an infinite disk subject to exponential space-based heat source

Author(s):  
Hassan Waqas ◽  
Sumeira Yasmin ◽  
Sami Ullah Khan ◽  
Sumaira Qayyum ◽  
M. Ijaz Khan ◽  
...  

In recent years, the research for enhanced thermal transportation is centered around the utilization of nanostructures to avail the prospective benefits in areas of biomedical, metallurgy, polymer processing, mechanical and electrical engineering applications, food processing, ventilation, heat storage devices, nuclear systems cooling, electronic devices, solar preoccupation, magnetic sticking, bioengineering applications, etc. The thermal aspects of nanoliquids and associated dynamics properties are still necessary to be explored. In this thermal contribution, the flow of Casson nanofluid configured by an infinite disk is analyzed. The significance of Marangoni flow with activation energy, thermal and exponential space-dependent heat source, nonlinear thermal radiation and Joule heating impacts is also incorporated. Similarly, variables are affianced to recast the governing flow expressions into highly coupled nonlinear ODEs. The numerical simulation for the prevailing model is elucidated by applying the bvp4cbuilt-in function of computational commercial software MATLAB. Consequences of sundry parameters, namely, magnetic parameter, Prandtl number, radiation parameter, exponential space-dependent heat source parameter, thermal-dependent heat source parameter, Eckert number, Dufour parameter, Soret number, Schmidt number, Marangoni number and Marangoni ratio parameter, mixed convection parameter, buoyancy ratio parameter, bioconvection Rayleigh number, activation energy parameter, thermophoresis parameter, Brownian motion parameter, bioconvection Lewis number, Peclet number microorganisms difference variable versus involved flow profiles like velocity, temperature, concentration of nanoparticles and microorganism field are obtained and displayed through graphs and tabular data.

Mathematics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 25
Author(s):  
Bagh Ali ◽  
Rizwan Ali Naqvi ◽  
Amna Mariam ◽  
Liaqat Ali ◽  
Omar M. Aldossary

The below work comprises the unsteady flow and enhanced thermal transportation for Carreau nanofluids across a stretching wedge. In addition, heat source, magnetic field, thermal radiation, activation energy, and convective boundary conditions are considered. Suitable similarity functions use to transmuted partial differential formulation into the ordinary differential form, which is solved numerically by the finite element method and coded in Matlab script. Parametric computations are made for faster stretch and slowly stretch to the surface of the wedge. The progressing value of parameter A (unsteadiness), material law index ϵ, and wedge angle reduce the flow velocity. The temperature in the boundary layer region rises directly with exceeding values of thermophoresis parameter Nt, Hartman number, Brownian motion parameter Nb, ϵ, Biot number Bi and radiation parameter Rd. The volume fraction of nanoparticles rises with activation energy parameter EE, but it receded against chemical reaction parameter Ω, and Lewis number Le. The reliability and validity of the current numerical solution are ascertained by establishing convergence criteria and agreement with existing specific solutions.


Author(s):  
M. S. Alqarni ◽  
Hassan Waqas ◽  
Sumeira Yasmin ◽  
Taseer Muhammad

The prime aim of this investigation is to discuss the two-dimensional steady analysis of hybrid nanoliquids in the existence of magnetohydrodynamics (MHD), thermally radiation and viscous dissipation effects over a linear stretchable sheet. Carbon nanotubes (SWCNT and MWCNT) with copper (Cu) are comprised in the propylene glycol-based fluid. The significance of propylene glycol-based fluid is affected under the exponential space-based heat source phenomenon. The remarkable role of propylene glycol on thermal transport of hybrid nanoliquids is influenced in the presence of temperature-dependent viscosity. The highly nonlinear governing partial differential structures are reduced to nonlinear ODEs by using suitable transformations. The transformed nonlinear ODEs of flow problem have been solved numerically by employing bvp4c (shooting) scheme with Lobatto-IIIA formula in MATLAB. The physical outcomes of involved parameters are obtained by utilizing the graphical and tabular data. The heat transport rate and the skin friction under the numerical data are also presented. From the results, we concluded that the velocity of fluid is declined for higher nanoparticles volume fraction. Velocity of fluid is declined with growing magnetic parameter. Furthermore, the temperature is upgraded with the growing thermal Biot number.


2019 ◽  
Vol 15 (1) ◽  
pp. 227-245 ◽  
Author(s):  
Gireesha B.J. ◽  
M. Archana ◽  
B. Mahanthesh ◽  
Prasannakumara B.C.

PurposeThe purpose of this paper is to explore the effects of binary chemical reaction and activation energy on nano Casson liquid flow past a stretched plate with non-linear radiative heat, and also, the effect of a novel exponential space-dependent heat source (ESHS) aspect along with thermal-dependent heat source (THS) effect in the analysis of heat transfer in nanofluid. Comparative analysis is carried out between the flows with linear radiative heat process and non-linear radiative heat process.Design/methodology/approachA similarity transformation technique is utilised to access the ODEs from the governed PDEs. The manipulation of subsequent non-linear equations is carried out by a well-known numerical approach called Runge–Kutta–Fehlberg scheme. Obtained solutions are briefly discussed with the help of graphical and tabular illustrations.FindingsThe effects of various physical parameters on temperature, nanoparticles volume fraction and velocity fields within the boundary layer are discussed for two different flow situations, namely, flow with linear radiative heat and flow with non-linear radiative heat. It is found that an irregular heat source/sink (ESHS and THS) and non-linear solar radiation play a vital role in the enhancement of the temperature distributions.Originality/valueThe problem is relatively original to study the effects of activation energy and binary chemical reaction along with a novel exponential space-based heat source on laminar boundary flow past a stretched plate in the presence of non-linear Rosseland radiative heat.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hassan Waqas ◽  
Umar Farooq ◽  
Aqsa Ibrahim ◽  
M. Kamran Alam ◽  
Zahir Shah ◽  
...  

AbstractNanofluids has broad applications such as emulsions, nuclear fuel slurries, molten plastics, extrusion of polymeric fluids, food stuffs, personal care products, shampoos, pharmaceutical industries, soaps, condensed milk, molten plastics. A nanofluid is a combination of a normal liquid component and tiny-solid particles, in which the nanomaterials are immersed in the liquid. The dispersion of solid particles into yet another host fluid will extremely increase the heat capacity of the nanoliquid, and an increase of heat efficiency can play a significant role in boosting the rate of heat transfer of the host liquid. The current article discloses the impact of Arrhenius activation energy in the bioconvective flow of Burger nanofluid by an inclined wall. The heat transfer mechanism of Burger nanofluid is analyzed through the nonlinear thermal radiation effect. The Brownian dispersion and thermophoresis diffusions effects are also scrutinized. A system of partial differential equations are converted into ordinary differential equation ODEs by using similarity transformation. The multi order ordinary differential equations are reduced to first order differential equations by applying well known shooting algorithm then numerical results of ordinary equations are computed with the help of bvp4c built-in function Matlab. Trends with significant parameters via the flow of fluid, thermal, and solutal fields of species and the area of microorganisms are controlled. The numerical results for the current analysis are seen in the tables. The temperature distribution increases by rising the temperature ratio parameter while diminishes for a higher magnitude of Prandtl number. Furthermore temperature-dependent heat source parameter increases the temperature of fluid. Concentration of nanoparticles is an decreasing function of Lewis number. The microorganisms profile decay by an augmentation in the approximation of both parameter Peclet number and bioconvection Lewis number.


2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
T. Sajid ◽  
S. Tanveer ◽  
Z. Sabir ◽  
J. L. G. Guirao

The present article aims to investigate the behaviour of Maxwell–Sutterby fluid past an inclined stretching sheet accompanied with variable thermal conductivity, exponential heat source/sink, magneto-hydrodynamics (MHD), and activation energy. By utilizing the compatible similarity transformations, the nondimensionless PDEs are converted into dimensionless ODEs and further these ODEs are tackled with the help of the bvp4c numerical technique. To check the legitimacy of upcoming results and reliability of the applied bvp4c numerical scheme, a comparison with existing literature and nonlinear shooting method is made. The numerical outcomes delivered here show that the temperature profile escalates due to an augmentation in the heat sink parameter and moreover mass fraction field escalates on account of an improvement in the activation energy parameter.


2021 ◽  
Vol 60 (3) ◽  
pp. 3073-3086
Author(s):  
Umar Farooq ◽  
Hassan Waqas ◽  
M. Ijaz Khan ◽  
Sami Ullah Khan ◽  
Yu-Ming Chu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document