The visibility and stability of GaSe nanoflakes of about 50 layerson SiO2/Si wafers

Author(s):  
Ruslan A. Redkin ◽  
Daniil A. Kobtsev ◽  
Irina I. Kolesnikova ◽  
Svetlana Bereznaya ◽  
Yury Sarkisov ◽  
...  

GaSe nanoflakes on silicon substrates covered by SiO2 films are prepared by mechanical exfoliation from the bulk Bridgman-grown GaSe crystals using a scotch tape. The thickness of SiO2 films on Si substrates providing the highest optical contrast for observation of GaSe flakes is estimated by taking into account the spectral sensitivity of a commercial CMOS camera and broadband visible light illumination. According to our estimations, the optimal SiO2 thickness is [Formula: see text]126 nm for the visualization of GaSe flakes of 1–3 layers and [Formula: see text]100 nm for the flakes of 40–70 layers. The obtained nanoflakes are investigated by optical and atomic force microscopy and Raman spectroscopy. The observed spectral positions of the Raman peaks are in agreement with the positions of the peaks known for bulk and nanolayered GaSe samples. It is found that the 50 nm thick flakes are stable but are covered by oxide structures with lateral size about 100 nm and height [Formula: see text]5 nm after [Formula: see text]9 months exposure to ambient atmosphere.

2003 ◽  
Vol 780 ◽  
Author(s):  
C. Essary ◽  
V. Craciun ◽  
J. M. Howard ◽  
R. K. Singh

AbstractHf metal thin films were deposited on Si substrates using a pulsed laser deposition technique in vacuum and in ammonia ambients. The films were then oxidized at 400 °C in 300 Torr of O2. Half the samples were oxidized in the presence of ultraviolet (UV) radiation from a Hg lamp array. X-ray photoelectron spectroscopy, atomic force microscopy, and grazing angle X-ray diffraction were used to compare the crystallinity, roughness, and composition of the films. It has been found that UV radiation causes roughening of the films and also promotes crystallization at lower temperatures.Furthermore, increased silicon oxidation at the interface was noted with the UVirradiated samples and was shown to be in the form of a mixed layer using angle-resolved X-ray photoelectron spectroscopy. Incorporation of nitrogen into the film reduces the oxidation of the silicon interface.


2015 ◽  
Vol 22 (02) ◽  
pp. 1550027 ◽  
Author(s):  
NADIR. F. HABUBI ◽  
RAID. A. ISMAIL ◽  
WALID K. HAMOUDI ◽  
HASSAM. R. ABID

In this work, n- ZnO /p- Si heterojunction photodetectors were prepared by drop casting of ZnO nanoparticles (NPs) on single crystal p-type silicon substrates, followed by (15–60) min; step-annealing at 600∘C. Structural, electrical, and optical properties of the ZnO NPs films deposited on quartz substrates were studied as a function of annealing time. X-ray diffraction studies showed a polycrystalline, hexagonal wurtizte nanostructured ZnO with preferential orientation along the (100) plane. Atomic force microscopy measurements showed an average ZnO grain size within the range of 75.9 nm–99.9 nm with a corresponding root mean square (RMS) surface roughness between 0.51 nm–2.16 nm. Dark and under illumination current–voltage (I–V) characteristics of the n- ZnO /p- Si heterojunction photodetectors showed an improving rectification ratio and a decreasing saturation current at longer annealing time with an ideality factor of 3 obtained at 60 min annealing time. Capacitance–voltage (C–V) characteristics of heterojunctions were investigated in order to estimate the built-in-voltage and junction type. The photodetectors, fabricated at optimum annealing time, exhibited good linearity characteristics. Maximum sensitivity was obtained when ZnO / Si heterojunctions were annealed at 60 min. Two peaks of response, located at 650 nm and 850 nm, were observed with sensitivities of 0.12–0.19 A/W and 0.18–0.39 A/W, respectively. Detectivity of the photodetectors as function of annealing time was estimated.


2005 ◽  
Vol 106 ◽  
pp. 117-122 ◽  
Author(s):  
Izabela Szafraniak ◽  
Dietrich Hesse ◽  
Marin Alexe

Self-patterning presents an appealing alternative to lithography for the production of arrays of nanoscale ferroelectric capacitors for use in high density non-volatile memory devices. Recently a self-patterning method, based on the use of the instability of ultrathin films during hightemperature treatments, was used to fabricate nanosized ferroelectrics. This paper reports the use of the method for the preparation of PZT nanoislands on different single crystalline substrates - SrTiO3, MgO and LaAlO3. Moreover, a multi-step deposition procedure in order to control lateral the dimension of the crystals was introduced. The nanostructures obtained were studied by atomic force microscopy, scanning electron microscopy and X-ray diffraction.


1999 ◽  
Vol 594 ◽  
Author(s):  
M. E. Ware ◽  
R. J. Nemanich

AbstractThis study explores stress relaxation of epitaxial SiGe layers grown on Si substrates with unique orientations. The crystallographic orientations of the Si substrates used were off-axis from the (001) plane towards the (111) plane by angles, θ = 0, 10, and 22 degrees. We have grown 100nm thick Si(1−x) Ge(x) epitaxial layers with x=0.3 on the Si substrates to examine the relaxation process. The as-deposited films are metastable to the formation of strain relaxing misfit dislocations, and thermal annealing is used to obtain highly relaxed films for comparison. Raman spectroscopy has been used to measure the strain relaxation, and atomic force microscopy has been used to explore the development of surface morphology. The Raman scattering indicated that the strain in the as-deposited films is dependent on the substrate orientation with strained layers grown on Si with 0 and 22 degree orientations while highly relaxed films were grown on the 10 degree substrate. The surface morphology also differed for the substrate orientations. The 10 degree surface is relatively smooth with hut shaped structures oriented at predicted angles relative to the step edges.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7292
Author(s):  
Tomasz Rerek ◽  
Beata Derkowska-Zielinska ◽  
Marek Trzcinski ◽  
Robert Szczesny ◽  
Mieczyslaw K. Naparty ◽  
...  

Copper layers with thicknesses of 12, 25, and 35 nm were thermally evaporated on silicon substrates (Si(100)) with two different deposition rates 0.5 and 5.0 Å/s. The microstructure of produced coatings was studied using atomic force microscopy (AFM) and powder X-ray diffractometer (XRD). Ellipsometric measurements were used to determine the effective dielectric functions <ε˜> as well as the quality indicators of the localized surface plasmon (LSP) and the surface plasmon polariton (SPP). The composition and purity of the produced films were analysed using X-ray photoelectron spectroscopy (XPS).


1992 ◽  
Vol 280 ◽  
Author(s):  
H. Rojhantalab ◽  
M. Moinpour ◽  
N. Peter ◽  
M.L.A. Dass ◽  
W. Hough ◽  
...  

ABSTRACTChemically vapor deposited borophosphosilicate glass (BPSG) has been widely used in microelectronic device fabrication as interlayer dielectric film due to its excellent planarization, gettering and flow properties. With device geometry reducing to sub micron levels, there is an increasingly greater emphasis on detection and elimination of sub micron defects particularly on deposited film. In this paper, we report on the evaluation and characterization of the surface roughness of BPSG films of various thicknesses and film compositions deposited on Si substrates using the Atomic Force Microscopy (AFM). The effects of high temperature densification process on the surface roughness are presented. The defect detection capabilities of conventional laser-based particle counters with respect to the surface roughness of BPSG films are investigated.


2021 ◽  
Vol 54 (6) ◽  
Author(s):  
Roman Pleshkov ◽  
Nikolay Chkhalo ◽  
Vladimir Polkovnikov ◽  
Mikhail Svechnikov ◽  
Maria Zorina

The structures of Cr/Be multilayer mirror interfaces are investigated using X-ray reflectometry, diffuse X-ray scattering and atomic force microscopy. The combination of these methods makes it possible to separate the contributions of roughness and interlayer diffusion/intermixing for each sample. In the range of period thicknesses of 2.26–0.8 nm, it is found that the growth roughness of the Cr/Be multilayer mirrors does not depend on the period thickness and is ∼0.2 nm. The separation of roughness and diffuseness allows estimation of layer material intermixing and the resulting drop in the optical contrast, which is from 0.85 to 0.17 in comparison with an ideally sharp structure.


2015 ◽  
Vol 6 (4) ◽  
pp. 591-598 ◽  
Author(s):  
Saranya Amirtharajan ◽  
Pandiarajan Jeyaprakash ◽  
Jeyakumaran Natarajan ◽  
Prithivikumaran Natarajan

2000 ◽  
Vol 648 ◽  
Author(s):  
D. Tsamouras ◽  
G. Palasantzas ◽  
J. Th. M. De Hosson ◽  
G. Hadziioannou

AbstractGrowth front scaling aspects are investigated for PPV-type oligomer thin films vapor- deposited onto silicon substrates at room temperature. For film thickness d~15-300 nm, commonly used in optoelectronic devices, correlation function measurement by atomic force microscopy yields roughness exponents in the range H=0.45±0.04, and an rms roughness amplitude which evolves with film thickness as a power law σ∝ dβ with β=0.28±0.05. The non-Gaussian height distribution and the measured scaling exponents (H and β) suggest a roughening mechanism close to that described by the Kardar-Parisi-Zhang scenario.


Sign in / Sign up

Export Citation Format

Share Document