TOWARDS UNDERSTANDING ER FLUIDS USING SALS/RHEOMETRY

1996 ◽  
Vol 10 (23n24) ◽  
pp. 3029-3036
Author(s):  
Bryan J. Crosby ◽  
Tom McLeish ◽  
Harry Block

This paper details work in Cranfield and Leeds Universities of making a stock of transparent ER fluids, which could later be utilised in a new optical electro rheometer (OER) to be assembled at Leeds University. Two basic routes were attempted. One was to use glass microspheres and the other was to use polymer spheres. In order to increase the strength of the ER effect, it was necessary to increase the volume loading while still maintaining sufficient transmission (about 75% over 2 mm). It was found to be possible to increase the ER effect quite substantially in some instances, and in others it was possible to get a near perfect refractive index match. It was not possible to combine both requirements in one fluid such that a high static yield stress was apparent in a transparent ER fluid. However one fluid was made which gave acceptable diffraction losses at high volume fractions, remained in suspension for extended periods and provide about 700 Pa yield stress at 4kV/mm and about 30% volume fraction viz: untreated poly(ethylene vinyl acetate) microspheres in Cereclor/bromonaphthalene/polystyrene solution. The OER being assembled at Leeds University is intended to record small angle light scattering (SALS) profiles, electrical and mechanical properties of ER fluids simultaneously. The OER is based around a DSR 500 machine purchased from Rheometric Scientific with quartz tools coated with transparent indium tin oxide(ITO), which is capable of measuring both steady state (DC) and oscillatory (AC) material parameters.

2012 ◽  
Vol 26 (13) ◽  
pp. 1250079 ◽  
Author(s):  
DE WANG ◽  
RONG SHEN ◽  
SHIQIANG WEI ◽  
KUNQUAN LU

A new type of electrorheological (ER) fluid consisting of lanthanum titanate (LTO) nanoparticles is developed. The ER fluids were prepared by suspending LTO powder in silicone oil and the particles were fabricated by wet chemical method. This ER fluid shows excellent ER properties: The static yield stress reaches over 150 kPa under 5 kV/mm with linear dependence on the applied DC electric field, and the current density is below 10 μA/cm2. In order to investigate the affect factor on the ER behavior, the LTO powder were heated under different temperatures. The ER performances of two particles treated under different temperatures were compared and the composition changes for those particles were analyzed with TG-FTIR technique. It was found that the static yield stress of the suspensions fell from over 150 kPa to about 40 kPa and the current densities decreased prominently as the rise of the heating temperature. TG-FTIR analysis indicated that polar groups remained in the particles such as alkyl group, hydroxyl group and carbonyl group etc., contribute to the ER effect significantly. The experimental results are helpful to understand the mechanism of the high ER effect and to synthesize better ER materials.


2008 ◽  
Vol 23 (2) ◽  
pp. 409-417 ◽  
Author(s):  
L. Xu ◽  
W.J. Tian ◽  
X.F. Wu ◽  
J.G. Cao ◽  
L.W. Zhou ◽  
...  

We have fabricated a class of colloidal electrorheological (ER) fluids, in which suspended TiO2 particles were synthesized by a sol-gel method and modified by 1,4-butyrolactone molecules with a permanent molecular dipole moment of 4.524 D. Compared with pure TiO2 ER fluids, the quasi-static yield stress of the polar- molecules-modified ER fluid is enhanced as high as 48.1 kPa when subjected to an external electric field of 5 kV/mm. Also, it possesses other attractive characters such as low current density (<14 μA/cm2) and low sedimentation. Based on a Green’s function method, we present a first-principles approach to investigate colloidal electrostatic interactions. Excellent agreement between experiment and theory has been shown for the enhancement ratio of quasi-static yield stress, which quantitatively reveals that enough polar molecules oriented within the field-directed gap between the colloidal particles can unexpectedly enhance the interactions, thus yielding the unusual enhancement. This shows a promising and flexible direction for achieving more highly active ER materials.


1999 ◽  
Vol 13 (14n16) ◽  
pp. 1931-1939 ◽  
Author(s):  
J. Akhavan ◽  
K. Slack ◽  
V. Wise ◽  
H. Block

Currents drawn under high fields often present practical limitations to electrorheological (ER) fluids usefulness. For heavy-duty applications where large torques have to be transmitted, the power consumption of a ER fluid can be considerable, and for such uses a current density of ~100μ A cm -2 is often taken as a practical upper limit. This investigation was conducted into designing a fluid which has little extraneous conductance and therefore would demand less current. Selected semi-conducting polymers provide effective substrates for ER fluids. Such polymers are soft insoluble powdery materials with densities similar to dispersing agents used in ER formulations. Polyaniline is a semi-conducting polymer and can be used as an effective ER substrate in its emeraldine base form. In order to provide an effective ER fluid which requires less current polyaniline was coated with an insulating polymer. The conditions for coating was established for lauryl and methyl methacrylate. Results from static yield measurements indicate that ER fluids containing coated polyaniline required less current than uncoated polyaniline i.e. 0.5μ A cm -2. The generic type of coating was also found to be important.


1997 ◽  
Vol 40-41 ◽  
pp. 699-704
Author(s):  
T. Sakai ◽  
K. Kobayashi ◽  
M. Sato

Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g. by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35 to 55 % by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m&sup2;/l, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau-Ovarlez-Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1551 ◽  
Author(s):  
Irina Ivanova ◽  
Viktor Mechtcherine

With increasing interest in the use of additive manufacturing techniques in the construction industry, static rheological properties of fresh concrete have necessarily come into focus. In particular, the knowledge and control of static yield stress (SYS) and its development over time are crucial for mastering formwork-free construction, e.g., by means of layered extrusion. Furthermore, solid understanding of the influences of various concrete constituents on the initial SYS of the mixture and the structural build-up rate is required for purposeful material design. This contribution is concentrated on the effect of aggregates on these rheological parameters. The volume fraction of aggregates was varied in the range of 35% to 55% by volume under condition of constant total surface area of the particles. The total surface area per unit volume of cement paste was equal to 5.00, 7.25 and 10.00 m²/L, conditioned on the constant volume fraction of aggregates. Both variations were enabled by changing the particle size distributions of the aggregates while holding the cement paste composition constant for all concrete mixtures. To characterise the SYS and the structural build-up, constant shear rate tests with a vane-geometry rotational rheometer were performed. It was found that in the ranges under investigation the variation in volume fraction had a more pronounced effect on the static rheological properties of concrete than did the variation in surface area. An accurate mathematical description of the relationship between the initial SYS of concrete and the relative volume fraction of aggregate based on the Chateau–Ovarlez–Trung model was proposed. Challenges in deriving a similar relationship for the structural build-up rate of concrete were highlighted.


1999 ◽  
Author(s):  
Ying Chen ◽  
Hans Conrad

Abstract The zero-field viscosity of model ER fluids consisting of glass beads in silicone oil was determined as a function of average particles size (D¯ = 3–75 μm), volume fraction (ϕ = 0.1–0.3) and bimodal mixtures of two sizes. The viscosity increased with ϕ and decreased with D¯. The viscosity of the suspensions ηs in all cases was described reasonably well by the following relation:ηs=ηs,o(ϕ)+b(ϕ)D¯2/D¯3 where ηs,o(ϕ) and b(ϕ) are constants which increase with ϕ. Reasonable agreement with the Mooney crowding equation occurred for the single size particles, giving for the crowding factor k = 1.3 + 1.5/D¯. For ϕ &lt; 0.2 the viscosity of the bimodal mixtures could be described by a modification of the Mooney equationηsηo=exp(2.76ϕ11-k1ϕ1)exp(2.76ϕ21-k2ϕ2) where ηo is the viscosity of the silicone oil, ϕi the volume fraction of each particle size Di and ki the normal crowding factor for that size. At ϕ = 0.3 the measured values of ηs for the bimodal mixtures became appreciably larger than those calculated from the modified equation. The decrease in particle size leads to both an increase in surface area of the particles per unit volume of the suspension and to a decrease in spacing (crowding); both factors probably contributed to the increase in ηs.


1992 ◽  
Vol 06 (15n16) ◽  
pp. 2575-2594 ◽  
Author(s):  
H. CONRAD ◽  
Y. CHEN ◽  
A. F. SPRECHER

The definition of the strength of an ER fluid is discussed. Studies on the electrorheology of ER fluids containing zeolite particles in various oils indicate that the order of magntiude difference between the measured values of the yield stress and those calculated based on the axial force of interaction between particles in a single-row chain can be explained by an enhancement of the force due to the observed clustering of particles into multi-row chains. The force enhancement factor varied with the shear rate and the concentration of particles, but was relatively independent of the electric field, temperature and host fluid. Reasonable agreement existed between the predicted and the measured shear stress-shear strain curves and the concentration dependence of the yield stress when the appropriate force enhancement factor was taken into account. The present theoretical-experimental considerations suggest that ER fluids may attain a yield strength of ~ 50 kPa .


2005 ◽  
Vol 19 (07n09) ◽  
pp. 1456-1462
Author(s):  
CHUNRONG LUO ◽  
HONG TANG ◽  
XIANGYANG GAO ◽  
JIANBO YIN ◽  
XIAOPENG ZHAO

By using a modified conduction model and the dipole approximation model respectively, we simulate the stress-strain curve and evaluate the dynamic yield stress through an ideal microstructure model of electrorheological fluid. The static yield strain is larger in our modified conduction model than in the dipole approximation model. Besides, the dynamic yield stress and static yield stress nearly linearly vary as volume fraction in the dipole model, while in our modified model they both exhibit a maximum at about volume fraction ϕ=0.45. Interpretation about these results is associated with the conduction effect and the inter-chain interactions.


Sign in / Sign up

Export Citation Format

Share Document