DEPOSITION-AND-SUBSTRATE TUNABLE PHOTONIC BANDGAP IN OPTICAL RESPONSES OF HYDROGENATED AMORPHOUS SILICON CARBIDE THIN FILMS

2003 ◽  
Vol 17 (09) ◽  
pp. 387-392 ◽  
Author(s):  
NIKIFOR RAKOV ◽  
ARSHAD MAHMOOD ◽  
MUFEI XIAO

Amorphous hydrogenated silicon carbide (a-SiC:H) thin films have been prepared by the RF reactive magnetron sputtering technique. The optical properties of the films have been studied by optical spectroscopy with an incoherent light source. The material is commonly regarded as a dielectric. We have discovered however that some films that were prepared under certain deposition conditions and on certain substrates may respond to external light as a metallic thin film, i.e. there are strongly enhanced reflection peaks in the optical spectrum. We have further discovered that some films may have a strong and broadened absorption peak at about 590 nm, which is an apparent photonic bandgap in the visible spectrum. The appearance of the photonic bandgap is very sensitive to two parameters: the substrate and the deposition gas. By changing the two parameters, one shifts the status of the film from with and without the photonic bandgap.

1987 ◽  
Vol 95 ◽  
Author(s):  
Mark A. Petrich ◽  
Jeffrey A. Reimer

AbstractWe present the results of a carbon-13 nuclear magnetic resonance (NMR) study of well-characterized thin films of amorphous hydrogenated silicon carbide. The NMR data detail the distribution of carbon local bonding configurations in films which have carbon-to-silicon ratios less than one. In particular, we show data which clearly identify and quantify non-hydrogenated sp2, or unsaturated, carbon bonding environments.


1998 ◽  
Vol 1 (2) ◽  
pp. 81-85
Author(s):  
Clara EE Hanekamp ◽  
Hans JRM Bonnier ◽  
Rolf H Michels ◽  
Kathinka H Peels ◽  
Eric PCM Heijmen ◽  
...  

1996 ◽  
Vol 452 ◽  
Author(s):  
U. Klement ◽  
D. Horst ◽  
F. Ernst

AbstractThe objective of this work is to find a material to replace amorphous hydrogenated silicon used as photosensitive part in the “retina” of an “electronic eye”. For that reason, ZnS, ZnSe, CdS and CdSe were chosen for investigations. Thin films, prepared by chemical vapour deposition, were characterized by transmission electron microscopy. The observed microstructures were correlated with the optoelectronic properties of these materials. CdSe was found to be the most promising material for our application. Hence, the influence of a dielectric interlayer and the effects of additional annealing treatments were analyzed for CdSe and will be discussed with respect to the optimization of the material.


2010 ◽  
Vol 256 (18) ◽  
pp. 5667-5671 ◽  
Author(s):  
J. Müllerová ◽  
L. Prušáková ◽  
M. Netrvalová ◽  
V. Vavruňková ◽  
P. Šutta

2009 ◽  
Vol 15 (1-3) ◽  
pp. 39-46 ◽  
Author(s):  
Aleksander M. Wrobel ◽  
Agnieszka Walkiewicz-Pietrzykowska ◽  
Marja Ahola ◽  
I. Juhani Vayrynen ◽  
Francisco J. Ferrer-Fernandez ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 32 (39) ◽  
pp. no-no
Author(s):  
Thomas Zecho ◽  
Birgit D. Brandner ◽  
Juergen Biener ◽  
Juergen Kueppers

Sign in / Sign up

Export Citation Format

Share Document